Skip to main content

Gesund.ai package for running validation metrics for classification, semantic segmentation, instance segmentation, and object detection models.

Project description

Validation Metrics Library

Overview

This library provides tools for calculating validation metrics for predictions and annotations in machine learning workflows. It includes a command-line tool for computing and displaying validation metrics.

Installation

To use this library, ensure you have the necessary dependencies installed in your environment. You can install them via pip:

pip install .

Usage

Command-Line Tool

The primary script for running validation metrics is run_metrics.py. This script calculates validation metrics based on JSON files containing predictions and annotations.

Arguments

  • annotations (required): Path to the JSON file containing annotation data.
  • predictions (required): Path to the JSON file containing prediction data.
  • class_mappings (required): Path to the JSON file containing class_mappings data.
  • problem_type (required): Problem type that Validation is being run for .e.g. classification, semantic_segmentation, instance_segmentation, object_detection

Example

Basic Usage:

run_metrics --annotations test_data/gesund_custom_format/gesund_custom_format_annotations_classification.json --predictions test_data/gesund_custom_format/gesund_custom_format_predictions_classification.json --class_mappings test_data/test_class_mappings.json --problem_type classification --format gesund_custom_format

Example JSON Inputs

The library supports annotations and predictions in the following formats:

  • COCO
  • YOLO
  • Gesund Custom Format

The format for Gesund Custom Format is shown below under Example JSON Inputs.

  • Annotations (test_data/gesund_custom_format/gesund_custom_format_annotations_classification.json):

    {
    "664df1bf782d9eb107789013": {
      "image_id": "664df1bf782d9eb107789013",
      "annotation": [
        {
          "id": "664dfb2085d8059c72b7b24a",
          "label": 0
        }
      ]
    },
    
    "664df1bf782d9eb107789015": {
      "image_id": "664df1bf782d9eb107789015",
      "annotation": [
        {
          "id": "664dfb2085d8059c72b7b24d",
          "label": 1
        }
      ]
    },
    ...
    }
    
  • Predictions (test_data/gesund_custom_format/gesund_custom_format_predictions_classification.json):

    {
    "664df1bf782d9eb107789013": {
      "image_id": "664df1bf782d9eb107789013",
      "prediction_class": 1,
      "confidence": 0.731047693767988,
      "logits": [
        0.2689523062320121,
        0.731047693767988
      ],
      "loss": 16.11764907836914
    },
    
    "664df1bf782d9eb107789015": {
      "image_id": "664df1bf782d9eb107789015",
      "prediction_class": 1,
      "confidence": 0.7308736572776326,
      "logits": [
        0.26912634272236735,
        0.7308736572776326
      ],
      "loss": 0.007578411139547825
    },
    ...
    }
    
  • Class Mappings (test_data/test_class_mappings.json):

    {"0": "normal", "1": "pneumonia"}
    

Example Outputs

Console Output

Only the Highlighted Overall Metrics are printed to the console. The output on the consol should look like so:

Validation Metrics:
----------------------------------------
Accuracy:
    Validation: 0.4375
    Confidence_Interval: 0.2656 to 0.6094
----------------------------------------
Micro F1:
    Validation: 0.4375
    Confidence_Interval: 0.2656 to 0.6094
----------------------------------------
Macro F1:
    Validation: 0.4000
    Confidence_Interval: 0.2303 to 0.5697
----------------------------------------
AUC:
    Validation: 0.3996
    Confidence_Interval: 0.2299 to 0.5693
----------------------------------------
Precision:
    Validation: 0.4343
    Confidence_Interval: 0.2625 to 0.6060
----------------------------------------
Sensitivity:
    Validation: 0.4549
    Confidence_Interval: 0.2824 to 0.6274
----------------------------------------
Specificity:
    Validation: 0.4549
    Confidence_Interval: 0.2824 to 0.6274
----------------------------------------
Matthews C C:
    Validation: -0.1089
    Confidence_Interval: 0.0010 to 0.2168
----------------------------------------
----------------------------------------
All Graphs and Plots Metrics saved in JSONs.
----------------------------------------

Output JSON Files

All output JSON files for all graphs and plots will be present in the outputs dir, under the randomly assigned {batch_job_id} dir.

COCO Format

It is to be noted that COCO format is traditionally used for object detection, instance segmentation, and keypoint detection, but it is not designed for image classification. Therefore, we have adapted COCO-like structures for classification tasks.

Sample format can be seen below:

  • Annotations (test_data/coco/coco_annotations_classification.json):
{
    "info": {},
    "licenses": [],
    "categories": [
        {
            "id": 0,
            "name": "normal",
            "supercategory": "medical conditions"
        },
        {
            "id": 1,
            "name": "pneumonia",
            "supercategory": "medical conditions"
        }
    ],
    "images": [
        {
            "id": "664df1bf782d9eb107789013",
            "file_name": "image_1.jpg",
            "width": 240,
            "height": 240
        },
        {
            "id": "664df1bf782d9eb107789015",
            "file_name": "image_2.jpg",
            "width": 240,
            "height": 240
        },
        {
            "id": "664df1bf782d9eb107789014",
            "file_name": "image_3.jpg",
            "width": 240,
            "height": 240
        },
        ...
    ],
    "annotations": [
        {
            "id": 1,
            "image_id": "664df1bf782d9eb107789013",
            "category_id": 0,
            "bbox": [],
            "area": 224,
            "iscrowd": 0
        },
        {
            "id": 2,
            "image_id": "664df1bf782d9eb107789015",
            "category_id": 1,
            "bbox": [],
            "area": 224,
            "iscrowd": 0
        },
        {
            "id": 3,
            "image_id": "664df1bf782d9eb107789014",
            "category_id": 1,
            "bbox": [],
            "area": 224,
            "iscrowd": 0
        },
        ...
    ]
  }
  • Predictions (test_data/coco_predictions_classification.json):
[
    {
        "image_id": "664df1bf782d9eb107789013",
        "category_id": 1,
        "score": 0.731047693767988,
        "loss": 16.11764907836914
      },
      {
        "image_id": "664df1bf782d9eb107789015",
        "category_id": 1,
        "score": 0.7308736572776326,
        "loss": 0.007578411139547825
      },
      {
        "image_id": "664df1bf782d9eb107789014",
        "category_id": 1,
        "score": 0.7310579660592649,
        "loss": 0.000025339495550724678
      },
      ...
      ]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gesund_val_library-0.3.2.tar.gz (132.3 kB view details)

Uploaded Source

Built Distribution

gesund_val_library-0.3.2-py3-none-any.whl (190.8 kB view details)

Uploaded Python 3

File details

Details for the file gesund_val_library-0.3.2.tar.gz.

File metadata

  • Download URL: gesund_val_library-0.3.2.tar.gz
  • Upload date:
  • Size: 132.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.10

File hashes

Hashes for gesund_val_library-0.3.2.tar.gz
Algorithm Hash digest
SHA256 8fa6dff3bc49159fd41cddb237ab13eddd84c86802f10a9c9e33559bd6ba9741
MD5 3dd685cc11e820cfeaa7b1fe5b02ad6b
BLAKE2b-256 148916c6a695f8bd6591c3e8e3f0b5bd491b25025e65736c7f45b4af977537dc

See more details on using hashes here.

File details

Details for the file gesund_val_library-0.3.2-py3-none-any.whl.

File metadata

File hashes

Hashes for gesund_val_library-0.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 d99055629afe68e470a8b076c219ffa6bd33f85dc59731bae28aaf382bb68838
MD5 c9dd436766cfbbfd7deb99f299c62949
BLAKE2b-256 731efd936a5466bd69d47493a2557dff306acd24b16efe884c98d20465d4ecb1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page