Skip to main content

Coroutine-based network library

Project description

gevent is a coroutine-based Python networking library.

Features include:

  • Fast event loop based on libev or libuv.

  • Lightweight execution units based on greenlet.

  • Familiar API that re-uses concepts from the Python standard library.

  • Cooperative sockets with SSL support.

  • DNS queries performed through c-ares or a threadpool.

  • Ability to use standard library and 3rd party modules written for standard blocking sockets

gevent is inspired by eventlet but features more consistent API, simpler implementation and better performance. Read why others use gevent and check out the list of the open source projects based on gevent.

gevent was written by Denis Bilenko.

Since version 1.1, gevent is maintained by NextThought with help from the contributors and is licensed under the MIT license.

See what’s new in the latest major release.

Check out the detailed changelog for this version.

Get gevent

gevent runs on Python >= 2.7, Python >= 3.4, or PyPy >= 5.5 (including PyPy2 and PyPy3). On all platforms, installing setuptools is required (this is done automatically if working in a virtual environment).

You can use pip to install gevent:

pip install gevent

Download the latest release from Python Package Index or clone the repository.

Read the documentation online at http://www.gevent.org. Additional installation information can be found here.

Post feedback and issues on the bug tracker, mailing list, blog and twitter (@gevent).

Development

To install the latest development version:

pip install setuptools cffi 'cython>=0.27' git+git://github.com/gevent/gevent.git#egg=gevent

To hack on gevent (using a virtualenv):

$ git clone https://github.com/gevent/gevent.git
$ cd gevent
$ virtualenv env
$ source env/bin/activate
(env) $ pip install -r dev-requirements.txt

Running Tests

There are a few different ways to run the tests. To simply run the tests on one version of Python during development, try this:

(env) $ pip install -e .
(env) $ cd src/greentest
(env) $ python ./testrunner.py

Before submitting a pull request, it’s a good idea to run the tests across all supported versions of Python, and to check the code quality using prospector. This is what is done on Travis CI. Locally it can be done using tox:

pip install tox
tox

The testrunner accepts a --coverage argument to enable code coverage metrics through the coverage.py package. That would go something like this:

cd src/greentest
python testrunner.py --coverage
coverage combine
coverage html -i
<open htmlcov/index.html>

Builds on Travis CI automatically submit updates to coveralls.io to monitor test coverage.

https://coveralls.io/repos/gevent/gevent/badge.svg?branch=master&service=github

Continuous integration

A test suite is run for every push and pull request submitted. Travis CI is used to test on Linux, and AppVeyor runs the builds on Windows.

https://travis-ci.org/gevent/gevent.svg?branch=master https://ci.appveyor.com/api/projects/status/q4kl21ng2yo2ixur?svg=true

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gevent-1.3.0.tar.gz (4.6 MB view details)

Uploaded Source

Built Distributions

gevent-1.3.0-pp260-pypy_41-macosx_10_13_x86_64.whl (688.4 kB view details)

Uploaded PyPymacOS 10.13+ x86-64

gevent-1.3.0-pp259-pypy_41-win32.whl (663.4 kB view details)

Uploaded PyPyWindows x86

gevent-1.3.0-cp37-cp37m-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

gevent-1.3.0-cp36-cp36m-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.6mWindows x86-64

gevent-1.3.0-cp36-cp36m-win32.whl (1.9 MB view details)

Uploaded CPython 3.6mWindows x86

gevent-1.3.0-cp36-cp36m-manylinux1_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.6m

gevent-1.3.0-cp36-cp36m-macosx_10_6_intel.whl (3.1 MB view details)

Uploaded CPython 3.6mmacOS 10.6+ Intel (x86-64, i386)

gevent-1.3.0-cp35-cp35m-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.5mWindows x86-64

gevent-1.3.0-cp35-cp35m-win32.whl (1.9 MB view details)

Uploaded CPython 3.5mWindows x86

gevent-1.3.0-cp35-cp35m-manylinux1_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.5m

gevent-1.3.0-cp35-cp35m-macosx_10_6_intel.whl (3.1 MB view details)

Uploaded CPython 3.5mmacOS 10.6+ Intel (x86-64, i386)

gevent-1.3.0-cp34-cp34m-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.4mWindows x86-64

gevent-1.3.0-cp34-cp34m-win32.whl (2.0 MB view details)

Uploaded CPython 3.4mWindows x86

gevent-1.3.0-cp34-cp34m-manylinux1_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.4m

gevent-1.3.0-cp34-cp34m-macosx_10_6_intel.whl (3.1 MB view details)

Uploaded CPython 3.4mmacOS 10.6+ Intel (x86-64, i386)

gevent-1.3.0-cp27-cp27mu-manylinux1_x86_64.whl (4.2 MB view details)

Uploaded CPython 2.7mu

gevent-1.3.0-cp27-cp27m-win_amd64.whl (2.1 MB view details)

Uploaded CPython 2.7mWindows x86-64

gevent-1.3.0-cp27-cp27m-win32.whl (2.0 MB view details)

Uploaded CPython 2.7mWindows x86

gevent-1.3.0-cp27-cp27m-manylinux1_x86_64.whl (4.2 MB view details)

Uploaded CPython 2.7m

gevent-1.3.0-cp27-cp27m-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 2.7mmacOS 10.9+ x86-64

File details

Details for the file gevent-1.3.0.tar.gz.

File metadata

  • Download URL: gevent-1.3.0.tar.gz
  • Upload date:
  • Size: 4.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for gevent-1.3.0.tar.gz
Algorithm Hash digest
SHA256 595ef44ddb3dd85529887ba9d9db507a18e3775863119cb506d649a3ace93fd4
MD5 3dcfe9fff78b2d5f7523b5679dd4e38c
BLAKE2b-256 db1936257af2728a57b2c42058177536154ffd79e6ab86b3619851e6002f275b

See more details on using hashes here.

File details

Details for the file gevent-1.3.0-pp260-pypy_41-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for gevent-1.3.0-pp260-pypy_41-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 d2aefa7e6797aaebac237f774188bd02379a55099fd7f8b83b9a000caade6348
MD5 fdc2a4fb7014b3d545e9d77167355d6c
BLAKE2b-256 c140a82279aaa6144050a78e8a1cd87844918f916cf696d0d903a635b20ffa27

See more details on using hashes here.

File details

Details for the file gevent-1.3.0-pp259-pypy_41-win32.whl.

File metadata

File hashes

Hashes for gevent-1.3.0-pp259-pypy_41-win32.whl
Algorithm Hash digest
SHA256 890118871d1fed8c6c43a3b3972c4056c6779a72c6e70303e7971f44e0effa6f
MD5 91c06842ea342b26fc7f04f1abd0825f
BLAKE2b-256 cf7e0317cd28567d3ed096cf6c70c4165494988b44cc54a160dd34ed5d785e6b

See more details on using hashes here.

File details

Details for the file gevent-1.3.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gevent-1.3.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e7c29bdb88111d9f99b398ce6a49eb7cacf237770b9ebd5916df4c964d888f9d
MD5 5aab0c78d0c83c3fe8dc871aab84dd3e
BLAKE2b-256 138b100ed4c7b626bfab476b427f78101ae2929ebcb7a128ea047d662c1b688e

See more details on using hashes here.

File details

Details for the file gevent-1.3.0-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for gevent-1.3.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 5cce166a8410720da1bd9790ca9fc3755061154ed5e2279c2b194bd41ebd13e2
MD5 06fdaf29d76f0be61578f10198ab6e74
BLAKE2b-256 a2c1bffdfde5bb570ad8a582f366d57d92c819151e88c2a57fb44fc080a95e99

See more details on using hashes here.

File details

Details for the file gevent-1.3.0-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for gevent-1.3.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 1beed4d7de0bb28dbcf17435df70b26f81a79c5a65394c9335dd1c41f22814b9
MD5 50f508d56a3212dabbca4f14ba8afb97
BLAKE2b-256 3c03a5bd1b28e8113d9fa45d315b291bdbd80880e9012c92ddb7f86b169523e2

See more details on using hashes here.

File details

Details for the file gevent-1.3.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for gevent-1.3.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1aee3b45a413ebc3b6b392d73bc7470b4c570fd252b49609560779b10da5403e
MD5 c9c431ecd40e676a404a59de5bef76cf
BLAKE2b-256 fd93a4dc9574336c54193537c796b1dc757cf7fab641e744c3ffe8298fe72adc

See more details on using hashes here.

File details

Details for the file gevent-1.3.0-cp36-cp36m-macosx_10_6_intel.whl.

File metadata

File hashes

Hashes for gevent-1.3.0-cp36-cp36m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 059cc49b2181e15ad1e803e42fc1ebdd93128ac74a7bfd00226c89f4c4ae9098
MD5 cf4e2deecaa7e8b9aafcea8ffaf9525b
BLAKE2b-256 1fd73a562630832b09b6e8f2a0998de02728c49b463deeb1a0e0c494ab49e470

See more details on using hashes here.

File details

Details for the file gevent-1.3.0-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for gevent-1.3.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 42bad7668c4ca76cd5d60282b548263f25be3b08727457b024eda0c73e6639ed
MD5 6c9dc783f7d578b33add8b245edc6141
BLAKE2b-256 576f95d7afe0cd7a6c8ae45fec7dfd9caf8a48b9e828df1aa2b4a54289b568a9

See more details on using hashes here.

File details

Details for the file gevent-1.3.0-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for gevent-1.3.0-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 97f442aee9f444d37dbd70acdcb0f1fa23afaca5233a3a0e90b5d6af56be2ec2
MD5 b63f36b343cd6e3eab1ae2435b0bcfcf
BLAKE2b-256 26a140c81dfcf85f6c0846fd518a948a79f00c920695e4fbbac9862ca5b4dea3

See more details on using hashes here.

File details

Details for the file gevent-1.3.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for gevent-1.3.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 442564ea89078d9ff8a673ed5f52ebd697af270fcbaaede8d6e21603e9983e30
MD5 cd8da27d60da89b2313c37770fdfed44
BLAKE2b-256 2131ac2b968e379ac54ffb83c6a7c79c61905794d6bebaea0df6de7369330962

See more details on using hashes here.

File details

Details for the file gevent-1.3.0-cp35-cp35m-macosx_10_6_intel.whl.

File metadata

File hashes

Hashes for gevent-1.3.0-cp35-cp35m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 3a475bdd0ee4130a1f1e786702dc37fb5cbf106677fa7394e43bf99f88446341
MD5 d3947038be88946f0edf8dc492596099
BLAKE2b-256 5244c1bed3f0a364bb3d1b3ed40c1640e65dbd4f8cec7f8562ffb68de66760e9

See more details on using hashes here.

File details

Details for the file gevent-1.3.0-cp34-cp34m-win_amd64.whl.

File metadata

File hashes

Hashes for gevent-1.3.0-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 03ee27df7e4157b54edf865bc5c417d33eedf9af4497a46f3ff702262dc9b665
MD5 ec0c5fe9ea536f8451285f5eef6580b7
BLAKE2b-256 0689d15cebab3c7efe4894e2daf135853db39869ec77a9ed65722a7c32d57fbe

See more details on using hashes here.

File details

Details for the file gevent-1.3.0-cp34-cp34m-win32.whl.

File metadata

File hashes

Hashes for gevent-1.3.0-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 b3b9769f0c26c3cfe3fa43c40cef8cacd210ca31f7d82d3e9eef583356e7ce46
MD5 8cd22a884d5fd5ec7828346360bb376d
BLAKE2b-256 4692c57de9fba91abfe4761570416722b7444b79023749e77bdbbab09df7bbba

See more details on using hashes here.

File details

Details for the file gevent-1.3.0-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for gevent-1.3.0-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e8d33a7b84e1750d5f55f14b2409244215f069372d083a4d176dfbac330ab99b
MD5 6724be2acd02157ac3a185a0c6463d2f
BLAKE2b-256 042c4246cc109a034503a6e4883308dfaecc4833e2372c4c9cfe1de52e0f4fc2

See more details on using hashes here.

File details

Details for the file gevent-1.3.0-cp34-cp34m-macosx_10_6_intel.whl.

File metadata

File hashes

Hashes for gevent-1.3.0-cp34-cp34m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 b44667eb4f96357a540685be636dc5cd972c5f707275b30671f469808bcea261
MD5 a266f861928cd10184e2125452e9509c
BLAKE2b-256 e162b651ddb67cce1e3e53e947e7834d4618f6bc6cbe29234ca086267c5fe620

See more details on using hashes here.

File details

Details for the file gevent-1.3.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for gevent-1.3.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 172c57ef7e3ae2dfd65689eac426a63f085ec63ee756268f5a4f8fc00a155f3c
MD5 3ae9d885d9f53154e53ce93f9286f9dd
BLAKE2b-256 4f128d06eafbddf8e58cfd3869319e087d9f5d2eb052e0374b87f6b153042b1c

See more details on using hashes here.

File details

Details for the file gevent-1.3.0-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for gevent-1.3.0-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 9d5073a4fda2bf4d67f4cb2c498f493b379e652fd1cc568d7c916747fabb8774
MD5 cdab4e5c102cff421289268e8dd012fc
BLAKE2b-256 2a94f09de38158babd28b93869c720c936564a3c3fd98c65cdc11118266f48c2

See more details on using hashes here.

File details

Details for the file gevent-1.3.0-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for gevent-1.3.0-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 3b1977d719a9c900fd5266d8f3bc66ddb001ab2f12183bdc29c9e3da458c6467
MD5 66846398493a3224d2b39fa1ac6ac23b
BLAKE2b-256 f71f232e60d920f48609869c6f594635f2938a3492a70c9beff3d0ad7f3106f3

See more details on using hashes here.

File details

Details for the file gevent-1.3.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for gevent-1.3.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6a095f3fc9245d02e4cf4e9d30c35ed2dc795b412aed1d10bf2e288676dece02
MD5 96aab8dbcc73a12cde92e6b89d0f95f8
BLAKE2b-256 5bd80990bd8f00a0828ad2a626964cbdd91c892356540618d241e76b1c52767f

See more details on using hashes here.

File details

Details for the file gevent-1.3.0-cp27-cp27m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gevent-1.3.0-cp27-cp27m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 38a19431ebad52dea385e4da39b64329b292f876113f0db045969aa0d377fc8b
MD5 5060b4755bd7b6bce90f9111c319de87
BLAKE2b-256 5fd08700a47955c014cc1469d6ab84f234cd8caccfc76dabe2c9339fd26d7420

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page