Skip to main content

ggplot for python

Project description

|image|

{ggplot} from `Yhat <http://yhathq.com>`__
==========================================

read more on our
`blog <http://blog.yhathq.com/posts/ggplot-for-python.html>`__

::

from ggplot import *

ggplot(aes(x='date', y='beef'), data=meat) + \
geom_point(color='lightblue') + \
stat_smooth(span=.15, color='black', se=True) + \
ggtitle("Beef: It's What's for Dinner") + \
xlab("Date") + \
ylab("Head of Cattle Slaughtered")

.. figure:: https://raw.github.com/yhat/ggplot/master/ggplot/tests/baseline_images/test_readme_examples/ggplot_demo_beef.png
:alt: image

image
What is it?
-----------

Yes, it's another port of
`ggplot2 <https://github.com/hadley/ggplot2>`__. One of the biggest
reasons why I continue to reach for ``R`` instead of ``Python`` for data
analysis is the lack of an easy to use, high level plotting package like
``ggplot2``. I've tried other libraries like
`bokeh <https://github.com/continuumio/bokeh>`__ and
`d3py <https://github.com/mikedewar/d3py>`__ but what I really want is
``ggplot2``.

``ggplot`` is just that. It's an extremely un-pythonic package for doing
exactly what ``ggplot2`` does. The goal of the package is to mimic the
``ggplot2`` API. This makes it super easy for people coming over from
``R`` to use, and prevents you from having to re-learn how to plot
stuff.

Goals
-----

- same API as ``ggplot2`` for ``R``
- never use matplotlib again
- ability to use both American and British English spellings of
aesthetics
- tight integration with `pandas <https://github.com/pydata/pandas>`__
- pip installable

Getting Started
---------------

Dependencies
~~~~~~~~~~~~

This package depends on the following packages, although they should be
automatically installed if you use ``pip``:

- ``matplotlib``
- ``pandas``
- ``numpy``
- ``scipy``
- ``statsmodels``
- ``patsy``

Installation
~~~~~~~~~~~~

Installing ``ggplot`` is really easy. Just use ``pip``!

::

$ pip install ggplot

Loading ``ggplot``
~~~~~~~~~~~~~~~~~~

::

# run an IPython shell (or don't)
$ ipython
In [1]: from ggplot import *

That's it! You're ready to go!

Examples
--------

::

meat_lng = pd.melt(meat[['date', 'beef', 'pork', 'broilers']], id_vars='date')
ggplot(aes(x='date', y='value', colour='variable'), data=meat_lng) + \
geom_point() + \
stat_smooth(color='red')

.. figure:: https://raw.github.com/yhat/ggplot/master/ggplot/tests/baseline_images/test_readme_examples/ggplot_meat.png
:alt: image

image
``geom_point``
~~~~~~~~~~~~~~

::

from ggplot import *
ggplot(diamonds, aes('carat', 'price')) + \
geom_point(alpha=1/20.) + \
ylim(0, 20000)

.. figure:: https://raw.github.com/yhat/ggplot/master/ggplot/tests/baseline_images/test_readme_examples/diamonds_geom_point_alpha.png
:alt: image

image
``geom_histogram``
~~~~~~~~~~~~~~~~~~

::

p = ggplot(aes(x='carat'), data=diamonds)
p + geom_histogram() + ggtitle("Histogram of Diamond Carats") + labs("Carats", "Freq")

.. figure:: https://raw.github.com/yhat/ggplot/master/ggplot/tests/baseline_images/test_readme_examples/diamonds_carat_hist.png
:alt: image

image
``geom_density``
~~~~~~~~~~~~~~~~

::

ggplot(diamonds, aes(x='price', color='cut')) + \
geom_density()

.. figure:: https://raw.github.com/yhat/ggplot/master/ggplot/tests/baseline_images/test_readme_examples/geom_density_example.png
:alt: image

image
::

meat_lng = pd.melt(meat[['date', 'beef', 'broilers', 'pork']], id_vars=['date'])
p = ggplot(aes(x='value', colour='variable', fill=True, alpha=0.3), data=meat_lng)
p + geom_density()

.. figure:: https://raw.github.com/yhat/ggplot/master/ggplot/tests/baseline_images/test_readme_examples/density_with_fill.png
:alt: image

image
``geom_bar``
~~~~~~~~~~~~

::

p = ggplot(mtcars, aes('factor(cyl)'))
p + geom_bar()

.. figure:: https://raw.github.com/yhat/ggplot/master/ggplot/tests/baseline_images/test_readme_examples/mtcars_geom_bar_cyl.png
:alt: image

image
TODO
----

`The list is long, but
distinguished. <https://github.com/yhat/ggplot/blob/master/TODO.md>`__
We're looking for contributors! Email greg at yhathq.com for more info.
For getting started with contributing, check out `these
docs <https://github.com/yhat/ggplot/blob/master/docs/contributing.md>`__

|image|

.. |image| image:: https://secure.travis-ci.org/yhat/ggplot.png?branch=master
:target: http://travis-ci.org/yhat/ggplot
.. |image| image:: https://ga-beacon.appspot.com/UA-46996803-1/ggplot/README.md
:target: https://github.com/yhat/ggplot

Project details


Release history Release notifications

History Node

0.11.5

History Node

0.11.4

History Node

0.11.3

History Node

0.11.2

History Node

0.11.1

History Node

0.11.0

History Node

0.10.10

History Node

0.10.9

History Node

0.10.8

History Node

0.10.7

History Node

0.10.6

History Node

0.10.5

History Node

0.10.4

History Node

0.10.3

History Node

0.10.2

History Node

0.10.1

History Node

0.10.0

History Node

0.9.7

History Node

0.9.6

History Node

0.9.5

History Node

0.9.4

History Node

0.9.3

History Node

0.9.2

History Node

0.9.0

History Node

0.6.8

History Node

0.6.5

History Node

0.6.4

History Node

0.6.3

History Node

0.6.2

History Node

0.6.1

History Node

0.6.0

This version
History Node

0.5.9

History Node

0.5.8

History Node

0.5.6

History Node

0.5.5

History Node

0.5.4

History Node

0.5.3

History Node

0.5.2

History Node

0.5.1

History Node

0.5.0

History Node

0.4.7

History Node

0.4.6

History Node

0.4.5

History Node

0.4.4

History Node

0.4.3

History Node

0.4.2

History Node

0.4.0

History Node

0.3.0

History Node

0.2.8

History Node

0.2.7

History Node

0.2.6

History Node

0.2.5

History Node

0.2.4

History Node

0.2.3

History Node

0.2.2

History Node

0.2.1

History Node

0.2.0

History Node

0.1.9

History Node

0.1.8

History Node

0.1.7

History Node

0.1.6

History Node

0.1.5

History Node

0.1.4

History Node

0.1.3

History Node

0.1.2

History Node

0.1.1

History Node

0.1.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
ggplot-0.5.9-py2.7.egg (6.0 MB) Copy SHA256 hash SHA256 Egg 2.7 May 2, 2014

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging CloudAMQP CloudAMQP RabbitMQ AWS AWS Cloud computing Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page