Skip to main content

Python module for ggseg-like visualizations

Project description

main Coverage Status MIT License pypi version

python-ggseg

Python module for ggseg-like visualizations.

Dependencies

Requires matplotlib>=3.4 and numpy>=1.21.

Install

pip install ggseg

Usage

In order to work with python-ggseg, the data should be prepared as a dictionary where each item is one region of a given atlas assigned with some numeric value. The current version includes three atlases: the Desikan-Killiany (DK) atlas , the Johns Hopkins University (JHU) white-matter atlas and the FreeSurfer aseg atlas.

Cortical ROIs (Desikan-Killiany)

Cortical ROI data such as using the DK atlas may be structured as follows:

{'bankssts_left': 1.1,
 'caudalanteriorcingulate_left': 1.0,
 'caudalmiddlefrontal_left': 2.6,
 'cuneus_left': 2.6,
 'entorhinal_left': 0.6,
 ...}

Then be passed to the ggseg.plot_dk function:

import ggseg
ggseg.plot_dk(data, cmap='Spectral', figsize=(15,15),
              background='k', edgecolor='w', bordercolor='gray',
              ylabel='Cortical thickness (mm)', title='Title of the figure')

DK

The comprehensive list of applicable regions can be found in this folder.

Subcortical regions (FreeSurfer aseg atlas)

data = {'Left-Lateral-Ventricle': 12289.6,
        'Left-Thalamus': 8158.3,
        'Left-Caudate': 3463.3,
        'Left-Putamen': 4265.3,
        'Left-Pallidum': 1620.9,
        '3rd-Ventricle': 1635.6,
        '4th-Ventricle': 1115.6,
        ...}
ggseg.plot_aseg(data, cmap='Spectral',
                background='k', edgecolor='w', bordercolor='gray',
                ylabel='Volume (mm3)', title='Title of the figure')

aseg

The comprehensive list of applicable regions can be found in this folder.

White-matter fiber tracts (Johns Hopkins University)

data = {'Anterior thalamic radiation L': 0.3004812598228455,
        'Anterior thalamic radiation R': 0.2909256815910339,
        'Corticospinal tract L': 0.3517134189605713,
        'Corticospinal tract R': 0.3606771230697632,
        'Cingulum (cingulate gyrus) L': 0.3149917721748352,
        'Cingulum (cingulate gyrus) R': 0.3126821517944336,
        ...}
ggseg.plot_jhu(data_jhu, background='k', edgecolor='w', cmap='Spectral',
               bordercolor='gray', ylabel='Mean Fractional Anisotropy',
               title='Title of the figure')

JHU

The comprehensive list of applicable regions can be found in this folder.

Tests

The current development version of python-ggseg has a coverage rate close to 100%. The corresponding tests can be found in this folder.

Examples

A Jupyter Notebook with examples can be found there.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ggseg-0.1.tar.gz (109.5 kB view details)

Uploaded Source

File details

Details for the file ggseg-0.1.tar.gz.

File metadata

  • Download URL: ggseg-0.1.tar.gz
  • Upload date:
  • Size: 109.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.10

File hashes

Hashes for ggseg-0.1.tar.gz
Algorithm Hash digest
SHA256 7ce6effa8d9d6f135a5314a9a5bf14c3592c636e785df5b55386a429b14270a8
MD5 362d590bb5e5b991db53b7ab15bf5e0b
BLAKE2b-256 f0596cbdd437cfd5be2296e9f0576408c8b569c841dbc5ff259cb187ba5af55f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page