Python module for ggseg-like visualizations
Project description
python-ggseg
Python module for ggseg-like visualizations.
Dependencies
Requires matplotlib>=3.4
and numpy>=1.21
.
Install
pip install ggseg
Usage
In order to work with python-ggseg
, the data should be prepared as a
dictionary where each item is one region of a given atlas assigned with some
numeric value. The current version includes three atlases: the
Desikan-Killiany (DK) atlas
, the Johns Hopkins University (JHU) white-matter atlas and the FreeSurfer aseg
atlas.
Cortical ROIs (Desikan-Killiany)
Cortical ROI data such as using the DK atlas may be structured as follows:
{'bankssts_left': 1.1, 'caudalanteriorcingulate_left': 1.0, 'caudalmiddlefrontal_left': 2.6, 'cuneus_left': 2.6, 'entorhinal_left': 0.6, ...}
Then be passed to the ggseg.plot_dk
function:
import ggseg
ggseg.plot_dk(data, cmap='Spectral', figsize=(15,15),
background='k', edgecolor='w', bordercolor='gray',
ylabel='Cortical thickness (mm)', title='Title of the figure')
The comprehensive list of applicable regions can be found in this folder.
Subcortical regions (FreeSurfer aseg
atlas)
data = {'Left-Lateral-Ventricle': 12289.6,
'Left-Thalamus': 8158.3,
'Left-Caudate': 3463.3,
'Left-Putamen': 4265.3,
'Left-Pallidum': 1620.9,
'3rd-Ventricle': 1635.6,
'4th-Ventricle': 1115.6,
...}
ggseg.plot_aseg(data, cmap='Spectral',
background='k', edgecolor='w', bordercolor='gray',
ylabel='Volume (mm3)', title='Title of the figure')
The comprehensive list of applicable regions can be found in this folder.
White-matter fiber tracts (Johns Hopkins University)
data = {'Anterior thalamic radiation L': 0.3004812598228455,
'Anterior thalamic radiation R': 0.2909256815910339,
'Corticospinal tract L': 0.3517134189605713,
'Corticospinal tract R': 0.3606771230697632,
'Cingulum (cingulate gyrus) L': 0.3149917721748352,
'Cingulum (cingulate gyrus) R': 0.3126821517944336,
...}
ggseg.plot_jhu(data_jhu, background='k', edgecolor='w', cmap='Spectral',
bordercolor='gray', ylabel='Mean Fractional Anisotropy',
title='Title of the figure')
The comprehensive list of applicable regions can be found in this folder.
Tests
The current development version of python-ggseg
has a coverage rate close to 100%.
The corresponding tests can be found in this folder.
Examples
A Jupyter Notebook with examples can be found there.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file ggseg-0.1.tar.gz
.
File metadata
- Download URL: ggseg-0.1.tar.gz
- Upload date:
- Size: 109.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7ce6effa8d9d6f135a5314a9a5bf14c3592c636e785df5b55386a429b14270a8 |
|
MD5 | 362d590bb5e5b991db53b7ab15bf5e0b |
|
BLAKE2b-256 | f0596cbdd437cfd5be2296e9f0576408c8b569c841dbc5ff259cb187ba5af55f |