Generalized Halton number generator

Project Description
Release History
Download Files

Generalized Halton Number Generator

===================================

This library allows to generate quasi-random numbers according to the

generalized Halton sequence. For more information on Generalized Halton

Sequences, their properties, and limits see Braaten and Weller (1979), Faure

and Lemieux (2009), and De Rainville et al. (2012) and reference therein.

The library is compatible Python 2 and Python 3.

Install with `pip`

------------------

Simply type in

$ pip install ghalton

Building the Code

-----------------

To build the code you'll need a working C++ compiler.

$ python setup.py install

Using the Library

-----------------

The library contains two generators one producing the standard Halton sequence

and the other a generalized version of it. The former constructor takes a

single argument, which is the dimensionalty of the sequence.

import ghalton

sequencer = ghalton.Halton(5)

The last code will produce a sequence in five dimension. To get the points use

points = sequencer.get(100)

A list of 100 lists will be produced, each sub list will containt 5 points

print points[0]

# [0.5, 0.3333, 0.2, 0.1429, 0.0909]

The halton sequence produce points in sequence, to reset it call

`sequencer.reset()`.

The generalised Halton sequence constructor takes at least one argument,

either the dimensionality, or a configuration. When the dimensionality is

given, an optional argument can be used to seed for the random permutations

created.

import ghalton

sequencer = ghalton.GeneralizedHalton(5, 68)

points = sequencer.get(100)

print points[0]

# [0.5, 0.6667, 0.4, 0.8571, 0.7273]

A configuration is a series of permutations each of *n_i* numbers,

where *n_i* is the *n_i*'th prime number. The dimensionality is infered from

the number of sublists given.

import ghalton

perms = ((0, 1),

(0, 2, 1),

(0, 4, 2, 3, 1),

(0, 6, 5, 4, 3, 2, 1),

(0, 8, 2, 10, 4, 9, 5, 6, 1, 7, 3))

sequencer = ghalton.GeneralizedHalton(perms)

points = sequencer.get(100)

print points[0]

# [0.5, 0.6667, 0.8, 0.8571, 0.7273]

The configuration presented in De Rainville et al. (2012) is available in the

ghalton module. Use the first *dim* dimensions of the `EA_PERMS` constant.

The maximum dimensionality provided is 100.

import ghalton

dim = 5

sequencer = ghalton.GeneralizedHalton(ghalton.EA_PERMS[:dim])

points = sequencer.get(100)

print points[0]

# [0.5, 0.6667, 0.8, 0.8571, 0.7273]

The complete API is presented [here](http://vision.gel.ulaval.ca/~fmdrainville/doc/python/index.html).

Configuration Repository

------------------------

See the [Quasi Random Sequences Repository](http://qrand.gel.ulaval.ca) for more configurations.

References

----------

E. Braaten and G. Weller. An improved low-discrepancy sequence for multidi-

mensional quasi-Monte Carlo integration. *J. of Comput. Phys.*,

33(2):249-258, 1979.

F.-M. De Rainville, C. Gagné, O. Teytaud, D. Laurendeau. Evolutionary

optimization of low-discrepancy sequences. *ACM Trans. Model. Comput. Simul.*,

22(2):1-25, 2012.

H. Faure and C. Lemieux. Generalized Halton sequences in 2008: A comparative

study. *ACM Trans. Model. Comput. Simul.*, 19(4):1-43, 2009.

===================================

This library allows to generate quasi-random numbers according to the

generalized Halton sequence. For more information on Generalized Halton

Sequences, their properties, and limits see Braaten and Weller (1979), Faure

and Lemieux (2009), and De Rainville et al. (2012) and reference therein.

The library is compatible Python 2 and Python 3.

Install with `pip`

------------------

Simply type in

$ pip install ghalton

Building the Code

-----------------

To build the code you'll need a working C++ compiler.

$ python setup.py install

Using the Library

-----------------

The library contains two generators one producing the standard Halton sequence

and the other a generalized version of it. The former constructor takes a

single argument, which is the dimensionalty of the sequence.

import ghalton

sequencer = ghalton.Halton(5)

The last code will produce a sequence in five dimension. To get the points use

points = sequencer.get(100)

A list of 100 lists will be produced, each sub list will containt 5 points

print points[0]

# [0.5, 0.3333, 0.2, 0.1429, 0.0909]

The halton sequence produce points in sequence, to reset it call

`sequencer.reset()`.

The generalised Halton sequence constructor takes at least one argument,

either the dimensionality, or a configuration. When the dimensionality is

given, an optional argument can be used to seed for the random permutations

created.

import ghalton

sequencer = ghalton.GeneralizedHalton(5, 68)

points = sequencer.get(100)

print points[0]

# [0.5, 0.6667, 0.4, 0.8571, 0.7273]

A configuration is a series of permutations each of *n_i* numbers,

where *n_i* is the *n_i*'th prime number. The dimensionality is infered from

the number of sublists given.

import ghalton

perms = ((0, 1),

(0, 2, 1),

(0, 4, 2, 3, 1),

(0, 6, 5, 4, 3, 2, 1),

(0, 8, 2, 10, 4, 9, 5, 6, 1, 7, 3))

sequencer = ghalton.GeneralizedHalton(perms)

points = sequencer.get(100)

print points[0]

# [0.5, 0.6667, 0.8, 0.8571, 0.7273]

The configuration presented in De Rainville et al. (2012) is available in the

ghalton module. Use the first *dim* dimensions of the `EA_PERMS` constant.

The maximum dimensionality provided is 100.

import ghalton

dim = 5

sequencer = ghalton.GeneralizedHalton(ghalton.EA_PERMS[:dim])

points = sequencer.get(100)

print points[0]

# [0.5, 0.6667, 0.8, 0.8571, 0.7273]

The complete API is presented [here](http://vision.gel.ulaval.ca/~fmdrainville/doc/python/index.html).

Configuration Repository

------------------------

See the [Quasi Random Sequences Repository](http://qrand.gel.ulaval.ca) for more configurations.

References

----------

E. Braaten and G. Weller. An improved low-discrepancy sequence for multidi-

mensional quasi-Monte Carlo integration. *J. of Comput. Phys.*,

33(2):249-258, 1979.

F.-M. De Rainville, C. Gagné, O. Teytaud, D. Laurendeau. Evolutionary

optimization of low-discrepancy sequences. *ACM Trans. Model. Comput. Simul.*,

22(2):1-25, 2012.

H. Faure and C. Lemieux. Generalized Halton sequences in 2008: A comparative

study. *ACM Trans. Model. Comput. Simul.*, 19(4):1-43, 2009.

## Download Files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

File Name & Checksum SHA256 Checksum Help | Version | File Type | Upload Date |
---|---|---|---|

ghalton-0.6.1.tar.gz (125.3 kB) Copy SHA256 Checksum SHA256 | – | Source | Aug 24, 2017 |