A Cython frontend to the c++ library giac. (Computer Algebra System)
Project description
- Name:
giacpy
- Summary:
A Cython frontend to the c++ library giac. (Computer Algebra System)
- Copyright:
- 2012 Frederic Han
- License:
GPL v2 or above
- Home-page:
Access from python to the Computer Algebra System giac via libgiac
Introduction
This is an interface to be able to use from Python the Giac features.
Giac is a general purpose Computer algebra system by Bernard Parisse released under GPLv3.
It is build on C and C++ libraries: PARI, NTL (arithmetic), CoCoA (Groebner basis), GSL (numerics), GMP (big integers), MPFR (bigfloats)
It provides (fast) algorithms for multivariate polynomial operations (product, GCD, factorisation) and
symbolic computations: solver, simplifications, limits/series, integration, sommation…
Linear Algebra with numerical or symbolic coefficients.
giacpy is an interface to this library. It is built with cython. Graphic output is obtained with qcas by Loic Lecoq: http://git.tuxfamily.org/qcas/qcas.git
Short Usage
Example:
>>> import giacpy # outputs various messages Help file ... aide_cas not found Added 0 synonyms >>> giacpy.ifactor(2**128+1) 59649589127497217*5704689200685129054721 >>> from giacpy import giac >>> x,y,z=giac('x,y,z') >>> f=(x+y+z+1)**15+1 >>> g=(f*(f+1)).normal() >>> print g.nops() >>> print g.factor().nops() >>> f.diff()
Help:
>>> help("giacpy") >>> from giacpy import normal >>> print(normal.__doc__) ; # to have help on some giac keyword >>> solve.htmlhelp('fr') ; # (may be not avaible on your system) to have detailled help on some giac keyword >>> htmlhelp() ; # to have help the global help pages. * Graphics 2D Output: (cf. help('giacpy') for examples) If your version of giacpy has qt support, you can send graphics to qcas with the .qcas() method. For experimental interactive geometry see: help(qcas)
Install
To build the extension from sources (unix):
You need the giac library, gmp and python headers. Ex: giac, libgmp-dev python-dev
Then execute the command: python setup.py build_ext (or try the: make or make local)
If you need some options see: python setup.py build_ext –help
To install giacpy on unix (needs libgiac): python setup.py install
For binaries of giacpy: http://webusers.imj-prg.fr/~frederic.han/xcas/giacpy/
To run tests you can try: make test or run: python -m doctest giacpy.pyx -v (in the directory of giapy.so if it is not installed)
Short Tutorial on the giac function
This function evaluate a python object with the giac library.
It creates in python a Pygen element and evaluate it with giac:
>>> from giacpy import giac,pi >>> x,y=giac('x,y');type(x) <type 'giacpy.Pygen'> >>> (x+2*y).cos().texpand() cos(x)*(2*cos(y)**2-1)-sin(x)*2*cos(y)*sin(y)
Coercion, Pygen and internal giac variables:
The most usefull objects will be the Python object of type Pygen.
>>> from giacpy import * >>> x,y,z=giac('x,y,z') >>> f=sum([x[i] for i in range(5)])**15/(y+z);f.coeff(x[0],12) (455*(x[1])**3+1365*(x[1])**2*x[2]+1365*(x[1])**2*x[3]+1365*(x[1])**2*x[4]+1365*x[1]*(x[2])**2+2730*x[1]*x[2]*x[3]+2730*x[1]*x[2]*x[4]+1365*x[1]*(x[3])**2+2730*x[1]*x[3]*x[4]+1365*x[1]*(x[4])**2+455*(x[2])**3+1365*(x[2])**2*x[3]+1365*(x[2])**2*x[4]+1365*x[2]*(x[3])**2+2730*x[2]*x[3]*x[4]+1365*x[2]*(x[4])**2+455*(x[3])**3+1365*(x[3])**2*x[4]+1365*x[3]*(x[4])**2+455*(x[4])**3)/(y+z)
The Python object y of type Pygen is not an internal giac variable. (Most of the time you won’t need to use internal giac variables).
>>> type(y);giac('y:=1');y <type 'giacpy.Pygen'> 1 y
There are some natural coercion to Pygen elements:
>>> pi>3.14 ; pi >3.15 ; giac(3)==3 True False True
Lists of Pygen and Giac lists:
Here l1 is a giac list and l2 a python list of Pygen type objects.
>>> l1=giac(range(10)); l2=[1/(i**2+1) for i in l1] >>> sum(l2) 33054527/16762850So l1+l1 is done in giac and means a vector addition. But l2+l2 is done in Python so it is the list concatenation.
>>> l1+l1 [0,2,4,6,8,10,12,14,16,18] >>> l2+l2 [1, 1/2, 1/5, 1/10, 1/17, 1/26, 1/37, 1/50, 1/65, 1/82, 1, 1/2, 1/5, 1/10, 1/17, 1/26, 1/37, 1/50, 1/65, 1/82]
Here V is not a Pygen element. We need to push it to giac to use a giac method like dim, or we need to use an imported function.
>>> V=[ [x[i]**j for i in range(9)] for j in range(9)] >>> giac(V).dim() [9,9] >>> det_minor(V).factor() (x[7]-(x[8]))*(x[6]-(x[8]))*(x[6]-(x[7]))*(x[5]-(x[8]))*(x[5]-(x[7]))*(x[5]-(x[6]))*(x[4]-(x[8]))*(x[4]-(x[7]))*(x[4]-(x[6]))*(x[4]-(x[5]))*(x[3]-(x[8]))*(x[3]-(x[7]))*(x[3]-(x[6]))*(x[3]-(x[5]))*(x[3]-(x[4]))*(x[2]-(x[8]))*(x[2]-(x[7]))*(x[2]-(x[6]))*(x[2]-(x[5]))*(x[2]-(x[4]))*(x[2]-(x[3]))*(x[1]-(x[8]))*(x[1]-(x[7]))*(x[1]-(x[6]))*(x[1]-(x[5]))*(x[1]-(x[4]))*(x[1]-(x[3]))*(x[1]-(x[2]))*(x[0]-(x[8]))*(x[0]-(x[7]))*(x[0]-(x[6]))*(x[0]-(x[5]))*(x[0]-(x[4]))*(x[0]-(x[3]))*(x[0]-(x[2]))*(x[0]-(x[1]))
Modular objects with %
>>> V=ranm(5,5) % 2; >>> ker(V).rowdim()+V.rank() 5 >>> a=giac(7)%3;a;a%0;7%3 1 % 3 1 1Do not confuse with the full python integers:
>>> type(7%3);type(a) <type 'int'> <type 'giacpy.Pygen'>
Syntaxes with reserved or unknown Python symbols:
In general equations needs symbols such as = < > or that have another meaning in Python. So those objects must be quoted.
>>> from giacpy import * >>> x=giac('x') >>> (1+2*sin(3*x)).solve(x) list[-pi/3/6,7*pi/18]>>> solve('sin(3*x)>2*sin(x)',x) Traceback (most recent call last): ... RuntimeError: Unable to find numeric values solving equation. For trigonometric equations this may be solved using assumptions, e.g. assume(x>-pi && x<pi) Error: Bad Argument Value
You can also add some hypothesis to a giac symbol:
>>> assume('x>-pi && x<pi') x >>> solve('sin(3*x)>2*sin(x)',x) list[((x>((-5*pi)/6)) and (x<((-pi)/6))),((x>0) and (x<(pi/6))),((x>(5*pi/6)) and (x<pi))]
To remove those hypothesis use the giac function: purge
>>> purge('x') assume[[],[line[-pi,pi]],[-pi,pi]] >>> solve('x>0') list[x>0]
Same problems with the ..
>>> from giacpy import * >>> x=giac('x') >>> f=1/(5+cos(4*x));f.int(x) 1/2/(2*sqrt(6))*(atan(2*tan(4*x/2)/sqrt(6))+pi*floor(4*x/2/pi+1/2)) >>> fMax(f,'x=-0..pi').simplify() pi/4,3*pi/4 >>> fMax.help() "Returns the abscissa of the maximum of the expression. Expr,[Var] fMax(-x^2+2*x+1,x) fMin" >>> sum(1/(1+x**2),'x=0..infinity').simplify() (pi*exp(pi)**2+pi+exp(pi)**2-1)/(2*exp(pi)**2-2)
Changelog
- Version 0.2:
Add a comparison function to Pygen. (with coersion)
Add a basic definition for most giac functions.
Add some help.
- Version 0.2.1:
Add __neg__ and __pos__ support for Pygen. (Ex: -pi)
Change __repr__ to hide too long outputs.
Make ** be the default printing for powers in giac.
- Version 0.2.2:
Change Pygen() to Pygen(‘NULL’). (Ex: rand())
Add direct acces to the python double value of a Pygen: a._double
Add conversion to giac modulars via the operator %
Add ctrl-c support during list initialisation and iteration
Modification of __getitem__ to allow formal variables with indexes.
Add htmlhelp method for Pygen objects.
Improve the giac initialisation of Python long integers. (basic Horner method instead of strings)
Improve help(giac) and doctests
Add support for the slice notation with giac lists
- Version 0.2.3:
Fix Pygen() None initialisation. Add crash test and improve speed in _wrap_gen
Add a small Makefile
Add a GiacSettings class with some frontends to the cas settings.
Add French keywords
- Version 0.2.4:
Update giac 1.1 keywords.
- Version 0.3:
Add a qt output for 2d graphics via qcas.
Fixes for giac 1.1
- Version 0.4:
Fixes for Python 3 compatibility
Qt/qcas can be disabled at compilation. (cf setup.py)
- 0.4.1:
add some giac keywords.
add proba_epsilon in GiacSetting.
test if the html doc is present locally, otherwise open the web doc.
- 0.4.2:
add digits and epsilon in GiacSetting.
Fix for interruptions of giac operators.
Put all the GiacKeywords in a new class: GiacFunction to enable docstrings from giac.
- 0.4.3:
Update qcas to current version. (svg export added)
New evaluation with threads to have better interruptions.
- 0.4.4:
Add sqrt and complex flags in giac settings.
Add support for multi indexes. Ex A[1,2].
- Version 0.5:
- 0.5.0:
Put all the Qt/Graphics functions in an independant submodule
Add a save method for Pygen and a loadgiacgen function.
- 0.5.2:
Update keywords and clean __init__.py docstring
- 0.5.3:
improve setup.py for mingw built
- 0.5.4:
update giac.dll windows binary to giac 1.2.3-57 with subsop patch and rowreduction-R55929 patch
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
Hashes for giacpy-0.5.4-cp36-cp36m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 438092381015b05a187467c7f6f36939d9e55b75a6609f5ba0a02ba359f677eb |
|
MD5 | 4b0f57246186a22acdba1b4ff9a6edcd |
|
BLAKE2b-256 | 0afb0a617336f0c9e8c1720be637a32813db822f67857104db7de142f94d98b6 |
Hashes for giacpy-0.5.4-cp36-cp36m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 22b45ac31a4f93bf5260cf0ea5dab9b1c85b5fc5ac23f02900d4db15fd429898 |
|
MD5 | 1b0363eefed224ddf54f1aa0c0436db2 |
|
BLAKE2b-256 | 600a8425605e6b4f812c379edcc2812b3ff1f04a349bfd245bb762075cf2aad2 |
Hashes for giacpy-0.5.4-cp35-cp35m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a75d0f11ac34142d06a7a60eb82a28d14028c353e304c2b8b11be60daeb0c035 |
|
MD5 | 2efccef952bc6bd117312155be94ff34 |
|
BLAKE2b-256 | 0e213cbd6de94e30fb2109aedb8fb750ba0f4e1e3873a74406170e02477c58c1 |
Hashes for giacpy-0.5.4-cp35-cp35m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 66a453e1c5606913d7323b7f0217a7c99148ea28858926e7f5fc90eada934644 |
|
MD5 | 3dc46ebf6ec0c456108e8f7dd23cdf92 |
|
BLAKE2b-256 | 72374e4e7ede71b80939904a39bd9b552c772e9dd213844731ed87068a1ea6d8 |
Hashes for giacpy-0.5.4-cp34-cp34m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5388ab1c0f73dff9ffe49ea1176f4928c2dda907372421d0358b0f4308c9b206 |
|
MD5 | df16e96b113dd6b9f8740bb15d452aab |
|
BLAKE2b-256 | 8e8eb67ecef1503d83a8322b83a71ddf8154d8e066b81468a2f61ebbdae29d87 |
Hashes for giacpy-0.5.4-cp34-cp34m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | dde820de3f359c485ed2f2bfdb05dacd6ea1ce4b08e63ea497de33fd0f02050b |
|
MD5 | 144a0a7d60a647b129c2b09e2223e3bd |
|
BLAKE2b-256 | 17ad71a4cfdbce690b9f7d8dae80671fa7f817a45a7681b8e1e8f3b39b43f9e2 |
Hashes for giacpy-0.5.4-cp27-cp27m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 65354232b5f97a105b374dba12e37edbedf6cb2af14915bf6eb77f7324ec3431 |
|
MD5 | f8513afe2291e8682fe1c45b7c902b26 |
|
BLAKE2b-256 | a43eabc8c89dc03250229fd55c983d3fb8795a8f9a9e58da17fb0f9f07b5c645 |
Hashes for giacpy-0.5.4-cp27-cp27m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d83e0f4da29e6503e9f1f30751be7d33a28049b27279d973e0243e122f5c4ee5 |
|
MD5 | bd052f0515c4018be46a82a37dfbd9e6 |
|
BLAKE2b-256 | 88742d1ea736cbfe36a3dfeb9e8924d04e5c6ddf57fb338e413e2059e0983cb7 |