Skip to main content

An integration package connecting Google VertexAI and GigaChain

Project description

langchain-google-vertexai

This package contains the LangChain integrations for Google Cloud generative models.

Installation

pip install -U langchain-google-vertexai

Chat Models

ChatVertexAI class exposes models such as gemini-pro and chat-bison.

To use, you should have Google Cloud project with APIs enabled, and configured credentials. Initialize the model as:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")

You can use other models, e.g. chat-bison:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="chat-bison", temperature=0.3)
llm.invoke("Sing a ballad of LangChain.")

Multimodal inputs

Gemini vision model supports image inputs when providing a single chat message. Example:

from langchain_core.messages import HumanMessage
from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro-vision")
# example
message = HumanMessage(
    content=[
        {
            "type": "text",
            "text": "What's in this image?",
        },  # You can optionally provide text parts
        {"type": "image_url", "image_url": {"url": "https://picsum.photos/seed/picsum/200/300"}},
    ]
)
llm.invoke([message])

The value of image_url can be any of the following:

  • A public image URL
  • An accessible gcs file (e.g., "gcs://path/to/file.png")
  • A local file path
  • A base64 encoded image (e.g., )

Embeddings

You can use Google Cloud's embeddings models as:

from langchain_google_vertexai import VertexAIEmbeddings

embeddings = VertexAIEmbeddings()
embeddings.embed_query("hello, world!")

LLMs

You can use Google Cloud's generative AI models as Langchain LLMs:

from langchain_core.prompts import PromptTemplate
from langchain_google_vertexai import ChatVertexAI

template = """Question: {question}

Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)

llm = ChatVertexAI(model_name="gemini-pro")
chain = prompt | llm

question = "Who was the president of the USA in 1994?"
print(chain.invoke({"question": question}))

You can use Gemini and Palm models, including code-generations ones:

from langchain_google_vertexai import VertexAI

llm = VertexAI(model_name="code-bison", max_output_tokens=1000, temperature=0.3)

question = "Write a python function that checks if a string is a valid email address"

output = llm(question)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gigachain_google_vertexai-2.0.0.tar.gz (72.7 kB view details)

Uploaded Source

Built Distribution

gigachain_google_vertexai-2.0.0-py3-none-any.whl (87.0 kB view details)

Uploaded Python 3

File details

Details for the file gigachain_google_vertexai-2.0.0.tar.gz.

File metadata

  • Download URL: gigachain_google_vertexai-2.0.0.tar.gz
  • Upload date:
  • Size: 72.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.5 Darwin/23.6.0

File hashes

Hashes for gigachain_google_vertexai-2.0.0.tar.gz
Algorithm Hash digest
SHA256 8f1d13ecae31e24cca340a2f5e901d8f4fd3de636481705f381a80f0a4fd3059
MD5 798417edf84e93b267626490f61b23aa
BLAKE2b-256 75eefc9c29ef0b0cb75604de91fc973da89e895e1928761fe225e32ca3c2813a

See more details on using hashes here.

File details

Details for the file gigachain_google_vertexai-2.0.0-py3-none-any.whl.

File metadata

File hashes

Hashes for gigachain_google_vertexai-2.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 aef8bc5aa73392e5e94d19fe25ee6e231bc0d7704503a37fafa68b4a031c0c56
MD5 2a6b2a2c9fb086fdead87bbaab6fc931
BLAKE2b-256 3c3bf7dcbea4819061e85209a5770440e0ebfc5b0e2497940bb0a177b83022cb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page