Skip to main content

An integration package connecting Google VertexAI and LangChain

Project description

gigachain-google-vertexai

This package contains the LangChain integrations for Google Cloud generative models.

Installation

pip install -U gigachain-google-vertexai

Chat Models

ChatVertexAI class exposes models such as gemini-pro and chat-bison.

To use, you should have Google Cloud project with APIs enabled, and configured credentials. Initialize the model as:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")

You can use other models, e.g. chat-bison:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="chat-bison", temperature=0.3)
llm.invoke("Sing a ballad of LangChain.")

Multimodal inputs

Gemini vision model supports image inputs when providing a single chat message. Example:

from langchain_core.messages import HumanMessage
from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro-vision")
# example
message = HumanMessage(
    content=[
        {
            "type": "text",
            "text": "What's in this image?",
        },  # You can optionally provide text parts
        {"type": "image_url", "image_url": {"url": "https://picsum.photos/seed/picsum/200/300"}},
    ]
)
llm.invoke([message])

The value of image_url can be any of the following:

  • A public image URL
  • An accessible gcs file (e.g., "gcs://path/to/file.png")
  • A local file path
  • A base64 encoded image (e.g., )

Embeddings

You can use Google Cloud's embeddings models as:

from langchain_google_vertexai import VertexAIEmbeddings

embeddings = VertexAIEmbeddings()
embeddings.embed_query("hello, world!")

LLMs

You can use Google Cloud's generative AI models as Langchain LLMs:

from langchain_core.prompts import PromptTemplate
from langchain_google_vertexai import ChatVertexAI

template = """Question: {question}

Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)

llm = ChatVertexAI(model_name="gemini-pro")
chain = prompt | llm

question = "Who was the president of the USA in 1994?"
print(chain.invoke({"question": question}))

You can use Gemini and Palm models, including code-generations ones:

from langchain_google_vertexai import VertexAI

llm = VertexAI(model_name="code-bison", max_output_tokens=1000, temperature=0.3)

question = "Write a python function that checks if a string is a valid email address"

output = llm(question)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gigachain_google_vertexai-0.1.2.tar.gz (39.0 kB view details)

Uploaded Source

Built Distribution

gigachain_google_vertexai-0.1.2-py3-none-any.whl (47.8 kB view details)

Uploaded Python 3

File details

Details for the file gigachain_google_vertexai-0.1.2.tar.gz.

File metadata

  • Download URL: gigachain_google_vertexai-0.1.2.tar.gz
  • Upload date:
  • Size: 39.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.11.6 Darwin/23.3.0

File hashes

Hashes for gigachain_google_vertexai-0.1.2.tar.gz
Algorithm Hash digest
SHA256 f0648f24140c1c74e65acc7e17a434784c12e6e1f9753adb2c7c004c5bcdd0c1
MD5 cf6fa4c787d9dc2c990913996bd0607d
BLAKE2b-256 cb32ea1a714f7718458de9de99b162efa35ffb8d99121249d35e563335d199d6

See more details on using hashes here.

File details

Details for the file gigachain_google_vertexai-0.1.2-py3-none-any.whl.

File metadata

File hashes

Hashes for gigachain_google_vertexai-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 f39e28d4076646ecfbbadeb20b4d0da39c1ae32abbf12aaf7f777d989858e95a
MD5 35f00b353841621a79e7555410f6a06e
BLAKE2b-256 1c7d3fcaea1af4550527d780c70b1772fef5142d605d4b00c04cbfc7e179b2e1

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page