Skip to main content

A toolkit for applying machine learning to large source code corpora

Project description


Build Status

This is a repository for neural language models (LMs) trained on a large corpus of source code and a toolkit to work with such models.

You could be interested in using this library if you want to:

  • Use existing pre-trained models for tasks such as autocompletion and bug prediction;
  • Use the pre-trained models for transfer transfer learning or further fine-tuning;
  • Train a model from scratch by choosing one of the wide range of corpus preprocessing choices, neural network (NN) architectures, and training options.

This project uses fastai and pytorch libraries for NN training/inference. For corpus preprocessing giganticode-dataprep is used.

Quick start


  • Python version >= 3.6 required!


pip install giganticode-langmodels

OR to build from source:

git clone
cd langmodels
python -m venv langmodels-venv
source langmodels-venv/bin/activate
pip install -r requirements.txt

Using existing pre-trained models

Loading a default pre-trained model

>>> import langmodels.repository as repo
>>> trained_model = repo.load_default_model()

[langmodels.repository] INFO: Model is not found in cache. Downloading from ...
[langmodels.model] DEBUG: Loading model from: /home/hlib/.local/share/langmodels/0.0.1/modelzoo/langmodel-large-split_10k_2_1024_191007.112241_-_langmodel-large-split_10k_2_1024_191022.141344/best.pth ...
[langmodels.model] DEBUG: Using GPU for inference

Other model loading options

To see which models are available, you can call list_pretrained_models function.

Set cached parameter to True (default is False) to display only cached LMs (e.g. if offline).

>>> import langmodels.repository as repo
>>> repo.list_pretrained_models(cached=False)

  ID                                                                    BPE_MERGES  LAYERS_CONFIG  ARCH      BIN_ENTROPY    TRAINING_TIME_MINUTES_PER_EPOCH  N_EPOCHS  BEST_EPOCH  TAGS                 

  langmodel-large-split_10k_2_1024_191007.112241_-_langmodel-large-spl  10k         1024/2/1024    AWD_LSTM  2.1455788479   1429                             6         5           ['BEST', 'DEFAULT']  
  langmodel-large-split_10k_3_1024_191007.112257_-_langmodel-large-spl  10k         512/3/1024     AWD_LSTM  2.14730056622  1432                             6         5           []                   
  langmodel-large-split_10k_2_2048_191007.112249_-_langmodel-large-spl  10k         512/2/2048     GRU       2.19923468325  1429                             6         5           []                   
  langmodel-large-split_10k_1_512_190926.120146                         10k         512/1/512      AWD_LSTM  2.69019493253  479                              9         8           ['MEDIUM']           
  langmodel-small-split_10k_1_512_190906.154943                         10k         512/1/512      AWD_LSTM  4.73768141172  4                                19        18          ['TINY']             
  dev_10k_1_10_190923.132328                                            10k         10/1/10        AWD_LSTM  9.15688191092  0                                0         -1          ['RANDOM']

Use query_all_models method to get a list of ModelDescription objects

>>> import langmodels.repository as repo
>>> repo.query_all_models()[0]
ModelDescription(id='langmodel-large-split_10k_2_1024_191007.112241_-_langmodel-large-split_10k_2_1024_191022.141344', bpe_merges='10k', layers_config='1024/2/1024', arch='AWD_LSTM', bin_entropy=2.1455788479, training_time_minutes_per_epoch=1429, n_epochs=6, best_epoch=5, tags=['BEST', 'DEFAULT'])

A model can be loaded by tag or by id.

You can specify if you want to load a model to CPU despite having cuda-supported GPU with force_use_cpu parameter (defaults to False). If cuda-supported GPU is not available, this parameter is disregarded.

>>> trained_model = repo.load_model_with_tag('BEST')

>>> trained_model = repo.load_model_by_id('dev_10k_1_10_190923.132328_new', force_use_cpu=True)

Also, you can use a lower-level API to load a model by path :

trained_model = repo.load_from_path('/home/hlib/.local/share/langmodels/0.0.1/modelzoo/dev_10k_1_10_190923.132328_new')




>>> import langmodels.repository as repo
>>> trained_model = repo.load_default_model()
>>> trained_model.feed_text('public static main() { if', extension='java')

# this does not change the state of the model:
>>> predictions = trained_model.predict_next_full_token(n_suggestions=5)
[('(', 0.9334765834402862), ('.', 0.01540983953864937), ('=', 0.008939018331858162), (',', 0.005372771784601065), ('the', 0.00309070517292041)]

# adding more context:
>>> trained_model.feed_text('(', extension='java')
>>> trained_model.predict_next_full_token(n_suggestions=3)
[('(', 0.14554535082422237), ('c', 0.018005003646104294), ('!', 0.01614662429123089)]

# resetting the state of the model (make it forget the context)
>>> trained_model.reset()
>>> trained_model.predict_next_full_token(n_suggestions=5)
[('/', 0.7209196484717589), ('package', 0.27093282656897594), ('import', 0.0007366385365522241), ('.', 0.0005714365190590807), ('public', 0.0003926736567296)]

Bug prediction based on per-line entropies evaluation

An LM can be used to calculate cross-entropies for each line of a file. High values can give an idea about unusual/suspicious chunks of code [1].

Check section LM Evaluation section to learn how to calculate cross-entropy for a project/file/string,

Check our vsc plugin for highlighting suspicious code.

Fine-tuning and Transfer learning


Training from scratch (Not supported on OSx)

Python API

>>> from import train
>>> from langmodels.lmconfig.datamodel import *

>>> train(LMTrainingConfig(corpus=Corpus(path='/path/to/the/dataset')))

More parameters to customize corpus pre-processing, NN architecture, and the training process can be specified:

>>> from import train
>>> from langmodels.lmconfig.datamodel import *

>>> train(LMTrainingConfig(corpus=Corpus(path='/path/to/the/dataset'), 
                            prep_function=PrepFunction(options=PrepFunctionOptions(no_com=False, no_unicode=True)),

Below you can see all the default parameters specified explicitly:

>>> from langmodels.lmconfig.datamodel import *
>>> from import train

>>> train(LMTrainingConfig(base_model=None, 
                       corpus=Corpus(path=os.path.join(HOME, 'dataset'), extensions="java"), 
                       prep_function=PrepFunction(corpus_api.bpe, ['10k'], 
                                                  PrepFunctionOptions(no_com=False, no_unicode=True, 
                                                                    no_spaces=True, max_str_length=sys.maxsize)), 
                           bidir=False, qrnn=False, emb_sz=1024, n_hid=1024, n_layers=3, 
                           drop=Dropouts(multiplier=0.5, oute=0.02, outi=0.25, outh=0.15, w=0.2, out=0.1), 
                           tie_weights=True, out_bias=True), 
                            optimizer=Adam(betas=(0.9, 0.99)),
                            activation_regularization=ActivationRegularization(alpha=2., beta=1.), 
                            schedule=RafaelsTrainingSchedule(init_lr=1e-4, mult_coeff=0.5, patience=0,
                                                            max_epochs=50, max_lr_reduction_times=6), 


Training can be run from command line as simple as running train command passing path to the config in json format as --config param. To override values in the json file (or default values if --config param is not specified), you can use --patch param.

>> langmodels train --config="/path/to/json/config.json" --patch="bs=64,arch.drop.multiplier=3.0"

If neither --config nor --patch params are specified, the training will be running with the default parameters. The json with the default parameters would look like follows:

{'arch': {'bidir': False,
          'drop': {'multiplier': 0.5,
                   'out': 0.1,
                   'oute': 0.02,
                   'outh': 0.15,
                   'outi': 0.25,
                   'w': 0.2},
          'emb_sz': 1024,
          'n_hid': 1024,
          'n_layers': 3,
          'name': 'lstm',
          'out_bias': True,
          'qrnn': False,
          'tie_weights': True},
 'base_model': None,
 'bptt': 200,
 'bs': 32,
 'config_version': '0.0.3-alpha.0',
 'corpus': {'extensions': 'java', 'path': '/Users/hlib/dataset'},
 'prep_function': {'callable': 'bpe',
                   'options': {'max_str_length': 9223372036854775807,
                               'no_com': False,
                               'no_spaces': True,
                               'no_str': False,
                               'no_unicode': True},
                   'params': ['10k']},
 'training': {'activation_regularization': {'alpha': 2.0, 'beta': 1.0},
              'files_per_epoch': 50000,
              'gradient_clip': 0.3,
              'optimizer': {'betas': [0.9, 0.99], 'name': 'Adam'},
              'schedule': {'init_lr': 0.0001,
                           'max_epochs': 50,
                           'max_lr_reduction_times': 6,
                           'mult_coeff': 0.5,
                           'name': 'rafael',
                           'patience': 0},
              'weight_decay': 1e-06}}

Most probably, you would have to override at least the corpus.path value.

For more options, run:

>> langmodels train --help

LM Evaluation

When training a language model, it is important to be able to evaluate LM's performance. In this section we describe different ways to do this using langmodels library. You can also use our tool to visualize the evaluation.

Evaluation on a string / file

First, a model can be evaluate on a string with evaluate_model_on_string method. Note that the result may differ a lot depending on the state of the model. Use methods reset and feed_text to reset the model to initial state and change the context of the model respectively.

>>> import langmodels.repository as repo 
>>> from langmodels.evaluation import evaluate_model_on_string    

>>> model = repo.load_default_model()
>>> evaluate_model_on_string(model, 'public class MyClass {')

{full_token_entropy/ParsedToken: EvaluationResult(
    tokens=['public</t>', 'class</t>', 'MyClass</t>', '{</t>'],
    token_types=['KeyWord', 'KeyWord', 'SplitContainer', 'OpeningCurlyBracket'],
    values=[1.8144783973693848, 3.668722629547119, 0.5620064437389374, 0.2571456730365753], 

Similarly, evaluate_model_on_file will return a list of Evaluation object (1 per each line)

Evaluation on a corpus

Evaluation can be run on a set of files with evaluate_model_on_path method

>>> import langmodels.repository as repo 
>>> from langmodels.evaluation import evaluate_model_on_path

>>> model = repo.load_default_model()
>>> evaluate_model_on_path(model, '/path/to/file')

100%|████████████████████████████████████████████████████████████████████████████| 28/28 [00:11<00:00,  2.35it/s]
{full_token_entropy/ParsedToken: (5.859160765187885, 5745)}

In full_token_entropy/ParsedToken: full_token_entropy is a metric used to evaluate the performance; ParsedToken means that all the tokens were considered when evaluating (See the next section for more details). Thus, the average full-token-entropy is ~ 5.85 evaluated on 5.7k tokens.

Specifying metrics

You can specify based on which metrics the model is to be evaluated.

>>> import langmodels.repository as repo 
>>> from langmodels.evaluation import evaluate_model_on_path

>>> model = repo.load_default_model()
>>> evaluate_model_on_path(model, '/path/to/file', metrics={'full_token_entropy', 'mrr'})

Possible metric values are full_token_entropy, subtoken_entropy, mrr. Default metric set is {full_token_entropy}

Release Notes

0.0.4-alpha.0 (NOT backward-compatible with 0.0.1-alpha.2)

  • Config datamodel improvements:
    • Add possibility to specify SGD optimizer;
    • Add patience param to training scedule;
    • Add converters between versions of configs;
  • Training:
    • Report binary entropy instead of log-base-e entropy;
    • Save more model metrics (size on disk, trainable params, training time per epoch);
    • Do not save model after every epoch by default;
  • Evaluation improvements:
    • Return token types in EvaluationResult;
    • Add possibility to specify token types to be considered when running evaluation;
    • Trained_model.predict_next_token(): return 1 suggestion by default;
  • Add script for new models upload.

0.0.1-alpha.2 (NOT backward-compatible with 0.0.1-alpha.1)

  • Make downloading model from the repository thread-safe
  • Force to specify the extension which corresponds to the type of the code fed into the TrainedModel. API change: trained_model.feed_text(text: str) -> trained_model.feed_text(text: str, extension: str)


Make methods of TrainedModel that change underlying PyTorch model thread-safe


Initial PyPI release


[1] Ray, B., Hellendoorn, V., Godhane, S., Tu, Z., Bacchelli, A., & Devanbu, P. (2016, May). On the" naturalness" of buggy code. In 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE) (pp. 428-439). IEEE.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for giganticode-langmodels, version 0.0.4a0
Filename, size File type Python version Upload date Hashes
Filename, size giganticode_langmodels-0.0.4a0-py3-none-any.whl (57.7 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size giganticode-langmodels-0.0.4a0.tar.gz (52.8 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page