Skip to main content

A toolkit for applying machine learning to large source code corpora

Project description

langmodels

Build Status

This is a repository for neural language models (LMs) trained on a large corpus of source code and a toolkit to work with such models.

You could be interested in using this library if you want to:

  • Use existing pre-trained models for tasks such as autocompletion and bug prediction;
  • Use the pre-trained models for transfer transfer learning or further fine-tuning;
  • Train a model from scratch by choosing one of the wide range of corpus preprocessing choices, neural network (NN) architectures, and training options.

This project uses fastai and pytorch libraries for NN training/inference. For corpus preprocessing giganticode-dataprep is used.

Quick start

Prerequisites

  • Python version >= 3.6 required!

Installation

git clone https://github.com//giganticode/langmodels
cd langmodels
python -m venv langmodels-venv
source langmodels-venv/bin/activate
pip install -r requirements.txt

Using existing pre-trained models

Loading a default pre-trained model

>>> import langmodels.modelregistry as reg
>>> trained_model = reg.load_default_model()

2019-10-29 12:01:21,699 [langmodels.modelregistry] INFO: Model is not found in cache. Downloading from https://www.inf.unibz.it/~hbabii/pretrained_models/langmodel-large-split_10k_2_1024_191007.112241_-_langmodel-large-split_10k_2_1024_191022.141344 ...
2019-10-29 12:01:35,732 [langmodels.model] DEBUG: Loading model from: /home/hlib/.local/share/langmodels/0.0.1/modelzoo/langmodel-large-split_10k_2_1024_191007.112241_-_langmodel-large-split_10k_2_1024_191022.141344/best.pth ...
2019-10-29 12:01:36,103 [langmodels.model] DEBUG: Using GPU for inference

Other model loading options

To see which models are available, you can call list_pretrained_models function.

Set cached parameter to True (default is False) to display only cached LMs (e.g. if offline).

>>> import langmodels.modelregistry as reg
>>> reg.list_pretrained_models(cached=False)

  ID                                                                    BPE_MERGES  LAYERS_CONFIG  ARCH      BIN_ENTROPY    TRAINING_TIME_MINUTES_PER_EPOCH  N_EPOCHS  BEST_EPOCH  TAGS                 

  langmodel-large-split_10k_2_1024_191007.112241_-_langmodel-large-spl  10k         1024/2/1024    AWD_LSTM  2.1455788479   1429                             6         5           ['BEST', 'DEFAULT']  
  it_10k_2_1024_191022.141344                                                                                                                                                                           
  langmodel-large-split_10k_3_1024_191007.112257_-_langmodel-large-spl  10k         512/3/1024     AWD_LSTM  2.14730056622  1432                             6         5           []                   
  it_10k_3_1024_191022.134822                                                                                                                                                                           
  langmodel-large-split_10k_2_2048_191007.112249_-_langmodel-large-spl  10k         512/2/2048     GRU       2.19923468325  1429                             6         5           []                   
  it_10k_2_2048_191022.141335                                                                                                                                                                           
  langmodel-large-split_10k_1_512_190926.120146                         10k         512/1/512      AWD_LSTM  2.69019493253  479                              9         8           ['MEDIUM']           
  langmodel-small-split_10k_1_512_190906.154943                         10k         512/1/512      AWD_LSTM  4.73768141172  4                                19        18          ['TINY']             
  dev_10k_1_10_190923.132328                                            10k         10/1/10        AWD_LSTM  9.15688191092  0                                0         -1          ['RANDOM']

Use query_all_models method to get a list of ModelDescription objects

>>> reg.query_all_models()[0]
ModelDescription(id='langmodel-large-split_10k_2_1024_191007.112241_-_langmodel-large-split_10k_2_1024_191022.141344', bpe_merges='10k', layers_config='1024/2/1024', arch='AWD_LSTM', bin_entropy=2.1455788479, training_time_minutes_per_epoch=1429, n_epochs=6, best_epoch=5, tags=['BEST', 'DEFAULT'])

A model can be loaded by tag or by id.

You can specify if you want to load a model to CPU despite having cuda-supported GPU with force_use_cpu parameter (defaults to False). If cuda-supported GPU is not available, this parameter is disregarded.

>>> trained_model = reg.load_model_with_tag('BEST')

2019-10-29 11:00:04,792 [langmodels.modelregistry] INFO: Model is not found in cache. Downloading from https://www.inf.unibz.it/~hbabii/pretrained_models/langmodel-large-split_10k_2_1024_191007.112241_-_langmodel-large-split_10k_2_1024_191022.141344 ...
2019-10-29 11:00:20,136 [langmodels.model] DEBUG: Loading model from: /home/hlib/.local/share/langmodels/0.0.1/modelzoo/langmodel-large-split_10k_2_1024_191007.112241_-_langmodel-large-split_10k_2_1024_191022.141344/best.pth ...
2019-10-29 11:00:25,479 [langmodels.model] DEBUG: Using GPU for inference

>>> trained_model = reg.load_model_by_id('dev_10k_1_10_190923.132328', force_use_cpu=True)

2019-10-29 11:26:12,070 [langmodels.model] DEBUG: Loading model from: /home/hlib/.local/share/langmodels/0.0.1/modelzoo/dev_10k_1_10_190923.132328/best.pth ...
2019-10-29 11:26:12,073 [langmodels.model] DEBUG: Using CPU for inference

Also, you can use a lower-level API to load a model by path :

trained_model = reg.load_from_path('/home/hlib/.local/share/langmodels/0.0.1/modelzoo/dev_10k_1_10_190923.132328')

Inference

Autocompletion

Example

>>> from langmodels.modelregistry import load_default_model

>>> trained_model = load_default_model()
>>> trained_model.feed_text('public static main() { if')

# this does not change the state of the model:
>>> predictions = trained_model.predict_next_full_token(n_suggestions=5)
>>> print(predictions)
[('(', 0.9334765834402862), ('.', 0.01540983953864937), ('=', 0.008939018331858162), (',', 0.005372771784601065), ('the', 0.00309070517292041)]

# adding more context, if the user types '(':
>>> trained_model.feed_text('(')
[('(', 0.14554535082422237), ('c', 0.018005003646104294), ('!', 0.01614662429123089)]


# if the cursor has been moved to the beginning of the file, 
# we need to reset the state of the model (make it forget the context)
>>> trained_model.reset()
>>> trained_model.predict_next_full_token(n_suggestions=5)
[('/', 0.7209196484717589), ('package', 0.27093282656897594), ('import', 0.0007366385365522241), ('.', 0.0005714365190590807), ('public', 0.0003926736567296)]

Bug prediction based on per-line entropies evaluation

An LM can be used to calculate cross-entropies for each line of a file. High values can give an idea about unusual/suspicious chunks of code [1].

Check section LM Evaluation section to learn how to calculate cross-entropy for a project/file/string,

Check our vsc plugin for highlighting suspicious code.

Fine-tuning and Transfer learning

TBD

Training from scratch (Not supported on OSx)

Python API

>>> from langmodels.training import train
>>> from langmodels.lmconfig.datamodel import *

>>> train(LMTrainingConfig(corpus=Corpus(path='/path/to/the/dataset')))

More parameters to customize corpus pre-processing, NN architecture, and the training process can be specified:

>>> from langmodels.training import train
>>> from langmodels.lmconfig.datamodel import *

>>> train(LMTrainingConfig(corpus=Corpus(path='/path/to/the/dataset'), 
                            prep_function=PrepFunction({'no_com': False, 'no_unicode': True}),
                            arch=GRU(n_layers=2),
                            training_procedure=TrainingProcedure(weight_decay=5e-6)
))

Below you can see all the default parameters specified explicitly:

>>> from langmodels.lmconfig.datamodel import *
>>> from langmodels.training import train

>>> train(LMTrainingConfig(base_model=None, 
                       bs=32, 
                       corpus=Corpus(path=os.path.join(HOME, 'dataset'), extensions="java"), 
                       prep_function=PrepFunction(corpus_api.bpe, ['10k'], 
                                                  {'no_com': False, 'no_unicode': True, 
                                                   'no_spaces': True, 'max_str_length': sys.maxsize}), 
                       arch=LstmArch(
                           bidir=False, qrnn=False, emb_sz=1024, n_hid=1024, n_layers=3, 
                           adam_betas=(0.7, 0.99), clip=0.3, reg_fn=RegFn(alpha=2, beta=1), 
                           drop=Dropouts(multiplier=0.5, oute=0.02, outi=0.25, outh=0.15, w=0.2, out=0.1), 
                           tie_weights=True, out_bias=True), 
                       bptt=200, 
                       training_procedure=TrainingProcedure(
                           schedule=RafaelsTrainingSchedule(init_lr=1e-4, mult_coeff=0.5, 
                                                            max_epochs=50, max_lr_reduction_times=6), 
                           weight_decay=1e-6)
                       )
      )

CLI API

Training can be run from command line as simple as running train command passing path to the config in json format as --config param. To override values in the json file (or default values if --config param is not specified), you can use --patch param.

>> langmodels train --config="/path/to/json/config.json" --patch="bs=64,arch.drop.multiplier=3.0"

If neither --config nor --patch params are specified, the training will be running with the default parameters. The json with the default parameters would look like follows:

{"arch": {"adam_betas": [0.7, 0.99], "bidir": false, "clip": 0.3, "drop":
 {"multiplier": 0.5, "out": 0.1, "oute": 0.02, "outh": 0.15, "outi": 0.25,
 "w": 0.2}, "emb_sz": 1024, "lstm": true, "n_hid": 1024, "n_layers": 3,
 "out_bias": true, "qrnn": false, "reg_fn": {"alpha": 2.0, "beta": 1.0},
 "tie_weights": true}, "base_model": null, "bptt": 200, "bs": 32,
 "config_version": "1.0.0", "corpus": {"extensions": "java", "path":
 "/home/<my_username>/dataset"},
 "prep_function": {"callable": "bpe", "params": ["10k"], "options":
 {"max_str_length": 9223372036854775807, "no_com": false, "no_spaces": true,
 "no_str": false, "no_unicode": true}}, "training_procedure": {"schedule":
 {"init_lr": 0.0001, "max_epochs": 50, "max_lr_reduction_times": 6,
 "mult_coeff": 0.5}, "weight_decay": 1e-06}}

Most probably, you would have to override at least the corpus.path value.

For more options, run:

>> langmodels train --help

LM Evaluation

When training a language model, it is important to have ability to evaluate LM's performance In this section we describe about different ways to ways to validate the performance using this library. You can also use our tool to visualize the evaluation.

Evaluation on a string / file

First, a model can be evaluate on a string with evaluate_model_on_string method. Note that the result may differ a lot depending on the state of the model. Use methods reset and feed_text to reset the model to initial state and change the context of the model respectively.

>>> from langmodels.modelregistry import load_default_model 
>>> from langmodels.evaluation import evaluate_model_on_string    

>>> model = load_default_model
>>> evaluate_model_on_string(model, 'public class MyClass {')

[Evaluation(
text='public class MyClass {', 
prep_text=['public</t>', 'class</t>', 'My', 'Class</t>', '{</t>'], 
prep_metadata=({'public', '{', 'class'}, [0, 1, 2, 4, 5], []), 
scenarios={
    full_token_entropy/all: EvaluationResult(subtoken_values=[8.684514999389648, 0.27599671483039856, 5.689223766326904, 3.430007219314575, 0.21710264682769775], average=4.574211336672306, n_samples=4)
})]

Similarly, evaluate_model_on_file will return a list of Evaluation object (1 per each line)

Evaluation on a corpus

Evaluation can be run on a set of files with evaluate_model_on_path method

>>> from langmodels.modelregistry import load_default_model 
>>> from langmodels.evaluation import evaluate_model_on_path

>>> model = load_default_model
>>> evaluate_model_on_path(model, '/path/to/file')

100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 67/67 [00:29<00:00,  2.82it/s, full_token_entropy/all=4.19 (n=48691)]
{full_token_entropy/all: (4.160669008602462, 49401)}

In full_token_entropy/all: full_token_entropy is a metric used to evaluate the performance; all means that all the tokens were considered when evaluating (See the next section for more details). Thus, the average full-token-entropy is ~ 4.16 evaluated on 49.4k tokens.

Specifying metrics and token types

You can specify the evaluation metrics

>>> from langmodels.modelregistry import load_default_model 
>>> from langmodels.evaluation import evaluate_model_on_path

>>> model = load_default_model
>>> evaluate_model_on_path(model, '/path/to/file', metrics={'full_token_entropy', 'mrr'})

{full_token_entropy/all: (2.367707431204745, 710), mrr/all: (0.25260753937415537, 710)}

Possible metric values are full_token_entropy, subtoken_entropy, mrr. Default metric set is {full_token_entropy}

Similarly token types to run evaluation on can be specified. Possible values are TokenTypes.ALL, TokenTypes.ALL_BUT_COMMENTS, TOKEN_TYPES.ONLY_COMENTS. Default value is {TokenTypes.ALL}

>>> from langmodels.modelregistry import load_default_model 
>>> from langmodels.evaluation import evaluate_model_on_path
>>>
from langmodels.evaluation.metrics import TokenTypes

>>> model = load_default_model
>>> evaluate_model_on_path(model, '/path/to/file', metrics={'full_token_entropy', 'mrr'}, token_types={TokenTypes.ALL, TokenTypes.ONLY_COMMENTS, TokenTypes.ALL_BUT_COMMENTS})

Release Notes

0.0.1-alpha.0

Initial PyPI release

References

[1] Ray, B., Hellendoorn, V., Godhane, S., Tu, Z., Bacchelli, A., & Devanbu, P. (2016, May). On the" naturalness" of buggy code. In 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE) (pp. 428-439). IEEE.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

giganticode-langmodels-0.0.1a0.tar.gz (46.6 kB view details)

Uploaded Source

Built Distribution

giganticode_langmodels-0.0.1a0-py3-none-any.whl (49.3 kB view details)

Uploaded Python 3

File details

Details for the file giganticode-langmodels-0.0.1a0.tar.gz.

File metadata

  • Download URL: giganticode-langmodels-0.0.1a0.tar.gz
  • Upload date:
  • Size: 46.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.9

File hashes

Hashes for giganticode-langmodels-0.0.1a0.tar.gz
Algorithm Hash digest
SHA256 a8e40e20b10bcdf2684a7d50b046a5d8371da98cd7183585e9bf1be555ae8de0
MD5 49fb88180f4431682b54816cbcee1ba1
BLAKE2b-256 a64840af4f56153451167b1f340693adab09fe73ebc37077824e6133405cca48

See more details on using hashes here.

File details

Details for the file giganticode_langmodels-0.0.1a0-py3-none-any.whl.

File metadata

  • Download URL: giganticode_langmodels-0.0.1a0-py3-none-any.whl
  • Upload date:
  • Size: 49.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.9

File hashes

Hashes for giganticode_langmodels-0.0.1a0-py3-none-any.whl
Algorithm Hash digest
SHA256 3336c05a64c715a0537b97b38cb55a57b54f654dcd364b4ac63a58fe9bff0990
MD5 76376ce958d1d307a91c4e79a91c42c9
BLAKE2b-256 7e962fd3204d0165b7b4dab1953e677aaf160e4a11dbfe282089ce0f89f8b597

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page