Skip to main content

CLI for Stable Diffusion tasks.

Project description

PyPI-Server Monthly Downloads Test Coveralls License MIT Project generated with PyScaffold

CLI for Stable Diffusion tasks.

Read more: https://artificialhoney.github.io/giger

Installation

pip install giger git+https://github.com/ai-forever/Real-ESRGAN.git

Usage

Please check first of all the help function and the examples.

giger --help

Also make sure to always obtain the latest version.

giger --version

Increase verbosity to also output the diffusers logging.

giger -vv

template

Use a jinja2 template file and supply data from file. Overwrite variables and print out to console.

giger template --config hero=viking --data hero.yml "$(cat hero.txt.j2)"

Use an inline jinja2 template file and supply data. Write out to file.

giger template --config hero=viking "A {{hero}} with long hair and sword" --output viking.txt

You can also pipe from another command to the template task.

echo "A {{hero}} with long hair and sword" | giger template --config hero=viking  --output viking.txt

prompt

Generate a prompt with multiple well-known input keywords to choose.

giger prompt "A viking with long hair and sword" --time "Ancient" --type "Comic Book" --art_style "Concept art" --realism "Photorealistic" --rendering_engine "Octane render" --lightning_style "Cinematic" --camera_position "Ultra-Wide-Angle Shot" --resolution "8k"

You can also pipe from another command to the prompt task.

echo "A viking with long hair and sword" | giger prompt --time "Ancient" --type "Comic Book" --art_style "Concept art" --realism "Photorealistic" --rendering_engine "Octane render" --lightning_style "Cinematic" --camera_position "Ultra-Wide-Angle Shot" --resolution "8k"

image

The commands pull the chosen model from huggingface.co. You choose one with the --model option. Also the batch and image sizes can be configured and one can pass the prompt via pipe.

Please see the help function for more information.

txt2img

giger image "A viking with long hair and sword, Concept art, Photorealistic, Octane render, Cinematic, Ultra-Wide-Angle Shot, 8k" --output $HOME/Desktop/ --name viking

img2img

giger image "A viking with long hair and sword, Concept art, Photorealistic, Octane render, Cinematic, Ultra-Wide-Angle Shot, 8k" --output $HOME/Desktop/ --name viking --input input.png

controlnet

giger image "A viking with long hair and sword, Concept art, Photorealistic, Octane render, Cinematic, Ultra-Wide-Angle Shot, 8k" --output $HOME/Desktop/ --name viking --input input.png --controlnet_model "lllyasviel/sd-controlnet-hed"

roop

Simply change the face in an input image and render the result to disc.

giger roop --face face.jpg --input target.png --output output.png

upscale

Simply upscale an image and render the result to disc.

giger upscale --input image.png --output image@4x.png --scale 4

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

giger-0.2.2.tar.gz (183.6 kB view details)

Uploaded Source

Built Distribution

giger-0.2.2-py3-none-any.whl (16.8 kB view details)

Uploaded Python 3

File details

Details for the file giger-0.2.2.tar.gz.

File metadata

  • Download URL: giger-0.2.2.tar.gz
  • Upload date:
  • Size: 183.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.10.12

File hashes

Hashes for giger-0.2.2.tar.gz
Algorithm Hash digest
SHA256 4fad4c643897b72a6cd05f9a32c0c04221617142317a37977839d8f610759c5d
MD5 7b228b4b5f9b8664fa2e0312795565aa
BLAKE2b-256 57d7633554858b147cee159de1a43009202dda28b78827706741799555a9ffe9

See more details on using hashes here.

File details

Details for the file giger-0.2.2-py3-none-any.whl.

File metadata

  • Download URL: giger-0.2.2-py3-none-any.whl
  • Upload date:
  • Size: 16.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.10.12

File hashes

Hashes for giger-0.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 6b3416a3216c80954018385ca2e50c24a0ab5cdbd02639faf63a520c549ade8d
MD5 c58c11fbe1c50deb56498bd11cfd2aeb
BLAKE2b-256 c3eca0948becc7fed5c282002f9f427dd44fb699f0cacf8a2887ad329abc5033

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page