Skip to main content

CLI for Stable Diffusion tasks.

Project description

PyPI-Server Monthly Downloads Test Coveralls License MIT Project generated with PyScaffold

CLI for Stable Diffusion tasks.

Read more: https://artificialhoney.github.io/giger

Installation

pip install giger git+https://github.com/ai-forever/Real-ESRGAN.git

Usage

Please check first of all the help function and the examples.

giger --help

Also make sure to always obtain the latest version.

giger --version

Increase verbosity to also output the diffusers logging.

giger -vv

template

Use a jinja2 template file and supply data from file. Overwrite variables and print out to console.

giger template --config hero=viking --data hero.yml "$(cat hero.txt.j2)"

Use an inline jinja2 template file and supply data. Write out to file.

giger template --config hero=viking "A {{hero}} with long hair and sword" --output viking.txt

You can also pipe from another command to the template task.

echo "A {{hero}} with long hair and sword" | giger template --config hero=viking  --output viking.txt

prompt

Generate a prompt with multiple well-known input keywords to choose.

giger prompt "A viking with long hair and sword" --time "Ancient" --type "Comic Book" --art_style "Concept art" --realism "Photorealistic" --rendering_engine "Octane render" --lightning_style "Cinematic" --camera_position "Ultra-Wide-Angle Shot" --resolution "8k"

You can also pipe from another command to the prompt task.

echo "A viking with long hair and sword" | giger prompt --time "Ancient" --type "Comic Book" --art_style "Concept art" --realism "Photorealistic" --rendering_engine "Octane render" --lightning_style "Cinematic" --camera_position "Ultra-Wide-Angle Shot" --resolution "8k"

image

The commands pull the chosen model from huggingface.co. You choose one with the --model option. Also the batch and image sizes can be configured and one can pass the prompt via pipe.

Please see the help function for more information.

txt2img

giger image "A viking with long hair and sword, Concept art, Photorealistic, Octane render, Cinematic, Ultra-Wide-Angle Shot, 8k" --output $HOME/Desktop/ --name viking

img2img

giger image "A viking with long hair and sword, Concept art, Photorealistic, Octane render, Cinematic, Ultra-Wide-Angle Shot, 8k" --output $HOME/Desktop/ --name viking --input input.png

controlnet

giger image "A viking with long hair and sword, Concept art, Photorealistic, Octane render, Cinematic, Ultra-Wide-Angle Shot, 8k" --output $HOME/Desktop/ --name viking --input input.png --controlnet_model "lllyasviel/sd-controlnet-hed"

roop

Simply change the face in an input image and render the result to disc.

giger roop --face face.jpg --input target.png --output output.png

upscale

Simply upscale an image and render the result to disc.

giger upscale --input image.png --output image@4x.png --scale 4

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

giger-0.3.0.tar.gz (183.6 kB view details)

Uploaded Source

Built Distribution

giger-0.3.0-py3-none-any.whl (16.9 kB view details)

Uploaded Python 3

File details

Details for the file giger-0.3.0.tar.gz.

File metadata

  • Download URL: giger-0.3.0.tar.gz
  • Upload date:
  • Size: 183.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for giger-0.3.0.tar.gz
Algorithm Hash digest
SHA256 cc31c490a043c23501d29fe679fc50e1dfec40e5215517ae713db0f0557293f5
MD5 453f105a2db163e1eab5e9c158c188b1
BLAKE2b-256 55feb753d849480c64aa3ba4e626bc5df16d0e584c7e85b4c02a83a8ac7668e1

See more details on using hashes here.

File details

Details for the file giger-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: giger-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 16.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for giger-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 42f73559376ddde844308c26b17119a24956ab4ddbb00ba524a236c8a344fdb3
MD5 a53a612c503d3eee686565b4a3f98353
BLAKE2b-256 8939c05118ac954cf2b24ca28fe20959cb12c7b06982c8d76d9330d6c60f3aff

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page