Skip to main content

A Python package for visualizing the geometry of linear programs.

Project description

GILP

PyPI pyversions CircleCI Documentation Status codecov

GILP (Geometric Interpretation of Linear Programs) is a Python package for visualizing the geometry of:

LPs can be constructed from NumPy arrays and many examples (such as the Klee-Minty cube) are included. The revised simplex method is implemented along with phase I for finding an initial feasible solution. The package relies on Plotly to generate standalone HTML files which can be viewed in a Jupyter Notebook inline or in a web browser.

Examples

2d simplex example 3d simplex example 2d branch and bound example 3d branch and bound example

Installation

The quickest way to get started is with a pip install.

pip install gilp

Development

To develop and run tests on gilp, first download the source code in the desired directory.

git clone https://github.com/henryrobbins/gilp

Next, cd into the gilp directory and create a Python virtual enviroment.

cd gilp
python -m venv env_name

Activate the virtual enviroment.

source env_name/bin/activate

Run the following in the virtual enviroment. The -e flag lets you make adjustments to the source code and see changes without re-installing. The [dev] installs necessary dependencies for developing and testing.

pip install -e .[dev]

To run tests and see coverage, run the following in the virtual enviroment.

coverage run -m pytest
coverage report --include=gilp/*

Usage

The LP class creates linear programs from (3) NumPy arrays: A, b, and c which define the LP in standard inequality form.

For example, consider the following LP:

The LP instance is created as follows.

import gilp
import numpy as np
from gilp.simplex import LP
A = np.array([[2, 1],
              [1, 1],
              [1, 0]])
b = np.array([[20],
              [16],
              [7]])
c = np.array([[5],
              [3]])
lp = LP(A,b,c)

After creating an LP, one can run simplex and generate a visualization with

from gilp.visualize import simplex_visual
simplex_visual(lp)

where simplex_visual() returns a plotly figure. The figure can then be viewed on a Jupyter Notebook inline using

simplex_visual(lp).show()

If .show() is run outside a Jupyter Notebook enviroment, the visualization will open up in the browser. Alternatively, the HTML file can be written and then opened.

simplex_visual(lp).write_html('name.html')

Below is the visualization for the example LP. The plot on the left shows the feasible region and constraints of the LP. Hovering over an extreme point shows the basic feasible solution, basis, and objective value. The iteration slider allows one to toggle through the iterations of simplex and see the updating tableaus. The objective slider lets one see the objective line or plane for some range of objective values.

2d simplex example

License

Licensed under the MIT License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gilp-1.0.0rc5.tar.gz (39.6 kB view details)

Uploaded Source

Built Distribution

gilp-1.0.0rc5-py3-none-any.whl (41.3 kB view details)

Uploaded Python 3

File details

Details for the file gilp-1.0.0rc5.tar.gz.

File metadata

  • Download URL: gilp-1.0.0rc5.tar.gz
  • Upload date:
  • Size: 39.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.8

File hashes

Hashes for gilp-1.0.0rc5.tar.gz
Algorithm Hash digest
SHA256 33ae96cb660a03f1809330cb8a06ebea952ce06c1d5cf0b6b0e1c53b5191c3b2
MD5 1203741d6f978c4bd823768b3e6e1e87
BLAKE2b-256 0eeaa0121a1115fbdcc2b60b9c39bb034cc4e178cb4245588e9175b51c89c46c

See more details on using hashes here.

File details

Details for the file gilp-1.0.0rc5-py3-none-any.whl.

File metadata

  • Download URL: gilp-1.0.0rc5-py3-none-any.whl
  • Upload date:
  • Size: 41.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.8

File hashes

Hashes for gilp-1.0.0rc5-py3-none-any.whl
Algorithm Hash digest
SHA256 37f0001c1a5b6d66a5499f73886c4d05e6f396304733d2c08354283c77dc4c94
MD5 7ee4b453be6e9d9ee235c5c8f0c15aea
BLAKE2b-256 a53c8beb53ba7243f3cc09974f73614c87fd316053ba7ff2ed76ead7a3c23790

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page