Skip to main content

A.I. for GIMP

Project description

This branch is under development. Dedicated for GIMP 3 and Python 3. :star: :star: :star: :star: are welcome.
Waiting for GIMP 3 to release officially.

Open Docs Open In Colab

Objectives

[1] Model Ensembling.
[2] Deep learning inference package for different computer vision tasks.
[3] Bridge gap between CV research work and real world data.
[4] Add AI to routine image editing workflows.

Contribution



Welcome people interested in contribution !! Join us on Slack -->
Contribution guidelines available --> Link.

Use as a Python Package

Open In Colab

import cv2
import gimpml
image = cv2.imread('sampleinput/img.png')
out = gimpml.kmeans(image)
cv2.imwrite('output/tmp-kmeans.jpg', out)
out = gimpml.deblur(image)
cv2.imwrite('output/tmp-deblur.jpg', out)

Use with GIMP

image1

Installation Steps

[1] Install GIMP 2.99.6 (Only windows and linux)
[2] Clone this repository: git clone https://github.com/kritiksoman/GIMP-ML.git
[3] Change branch :
git checkout --track origin/GIMP3-ML
[3] On linux, run for GPU/CPU:
bash GIMP-ML/install.bat
On windows, run for CPU:
GIMP-ML\install.bat
On windows, run for GPU:
GIMP-ML\install.bat gpu
[4] Follow steps that are printed in terminal or cmd.
FYI: weights link --> Link

Windows Linux

Model Zoo

Name License Dataset
deblur BSD 3-clause GoPro
faceparse MIT CelebAMask-HQ
coloring MIT ImageNet
monodepth MIT Multiple
super-resolution MIT ImageNet
matting Non-commercial purposes Adobe Deep Image Matting
semantic-segmentation MIT ADE20K
kmeans BSD -
dehazing MIT Custom
denoising GPL3 BSD68
enlighten BSD Custom
interpolate-frames MIT HD
inpainting CC BY-NC 4.0 CelebA, CelebHQ, Places2, Paris StreetView
Detect Objects Apache-2.0 COCO
Filter Folder Apache-2.0 COCO
Canny Edge Apache-2.0 -

Citation

Please cite using the following bibtex entry:

@article{soman2020GIMPML,
  title={GIMP-ML: Python Plugins for using Computer Vision Models in GIMP},
  author={Soman, Kritik},
  journal={arXiv preprint arXiv:2004.13060},
  year={2020}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gimpml-0.0.8.tar.gz (196.7 kB view details)

Uploaded Source

Built Distribution

gimpml-0.0.8-py3-none-any.whl (295.0 kB view details)

Uploaded Python 3

File details

Details for the file gimpml-0.0.8.tar.gz.

File metadata

  • Download URL: gimpml-0.0.8.tar.gz
  • Upload date:
  • Size: 196.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.8.10

File hashes

Hashes for gimpml-0.0.8.tar.gz
Algorithm Hash digest
SHA256 babaa870ca26d673a6542197591648575efac9115d51eb7d426d5db5892b2b0d
MD5 89337f995c2a2877a1eeb8b0050daf9f
BLAKE2b-256 65f6f71ac1df781d12b616365ad5a6025a10b903a97dab81c2eff467a1dc440e

See more details on using hashes here.

File details

Details for the file gimpml-0.0.8-py3-none-any.whl.

File metadata

  • Download URL: gimpml-0.0.8-py3-none-any.whl
  • Upload date:
  • Size: 295.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.8.10

File hashes

Hashes for gimpml-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 b52fd07aa1d4f9db239ab693648af688cd29af4e7d9fd2774c6b61e21cb1600b
MD5 bcf14246773068e3d479d45aab1eb757
BLAKE2b-256 78b0efbcf469946d720e69a840ef2d98b9b7e1a81f65837c3314070aa0716230

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page