Skip to main content

Gin-config: a lightweight configuration library for Python

Project description

Gin provides a lightweight configuration framework for Python, based on dependency injection. Functions or classes can be decorated with @gin.configurable, allowing default parameter values to be supplied from a config file (or passed via the command line) using a simple but powerful syntax. This removes the need to define and maintain configuration objects (e.g. protos), or write boilerplate parameter plumbing and factory code, while often dramatically expanding a project’s flexibility and configurability.

Gin is particularly well suited for machine learning experiments (e.g. using TensorFlow), which tend to have many parameters, often nested in complex ways.

Authors: Dan Holtmann-Rice, Sergio Guadarrama, Nathan Silberman Contributors: Oscar Ramirez, Marek Fiser

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for gin-config, version 0.2.0
Filename, size File type Python version Upload date Hashes
Filename, size gin_config-0.2.0-py2.py3-none-any.whl (37.4 kB) File type Wheel Python version py2.py3 Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page