Skip to main content

Toolbox for Machine Learning using Topological Data Analysis.

Project description

https://www.giotto.ai/static/vector/logo.svg

Azure Azure-cov Azure-test binder

giotto-learn

giotto-learn is a high performance topological machine learning toolbox in Python built on top of scikit-learn and is distributed under the Apache 2.0 license. It is part of the Giotto open-source project.

Website: https://giotto.ai

Project genesis

giotto-learn is the result of a collaborative effort between L2F SA, the Laboratory for Topology and Neuroscience at EPFL, and the Institute of Reconfigurable & Embedded Digital Systems (REDS) of HEIG-VD.

Installation

Dependencies

giotto-learn requires:

  • Python (>= 3.5)

  • scikit-learn (>= 0.21.3)

  • NumPy (>= 1.17.0)

  • SciPy (>= 0.17.0)

  • joblib (>= 0.11)

  • python-igraph (>= 0.7.1.post6)

  • plotly (>= 4.4.1)

  • matplotlib (>= 3.1.2)

To run the examples, jupyter is required.

User installation

If you already have a working installation of numpy and scipy, the easiest way to install giotto-learn is using pip

pip install -U giotto-learn

Documentation

Contributing

We welcome new contributors of all experience levels. The Giotto community goals are to be helpful, welcoming, and effective. To learn more about making a contribution to giotto-learn, please see the CONTRIBUTING.rst file.

Developer installation

C++ dependencies:
  • C++14 compatible compiler

  • CMake >= 3.9

  • Boost >= 1.56

The CMake and Boost dependencies can be installed in using Anaconda as follows:

conda install -c anaconda cmake
conda install -c anaconda boost
Source code

You can check the latest sources with the command:

git clone https://github.com/giotto-ai/giotto-learn.git
To install:
cd giotto-learn
pip install -e .

From there any change in the library files will be immediately available on your machine.

Testing

After installation, you can launch the test suite from outside the source directory:

pytest giotto

Changelog

See the RELEASE.rst file for a history of notable changes to giotto-learn.

Contacts:

maintainers@giotto.ai

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

giotto-learn-nightly-20191220.25.tar.gz (91.7 kB view details)

Uploaded Source

Built Distributions

giotto_learn_nightly-20191220.25-cp37-cp37m-win_amd64.whl (666.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

giotto_learn_nightly-20191220.25-cp37-cp37m-manylinux2010_x86_64.whl (890.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

giotto_learn_nightly-20191220.25-cp37-cp37m-macosx_10_13_x86_64.whl (629.0 kB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

giotto_learn_nightly-20191220.25-cp36-cp36m-win_amd64.whl (666.2 kB view details)

Uploaded CPython 3.6m Windows x86-64

giotto_learn_nightly-20191220.25-cp36-cp36m-manylinux2010_x86_64.whl (890.5 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

giotto_learn_nightly-20191220.25-cp36-cp36m-macosx_10_13_x86_64.whl (628.7 kB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

giotto_learn_nightly-20191220.25-cp35-cp35m-win_amd64.whl (666.2 kB view details)

Uploaded CPython 3.5m Windows x86-64

giotto_learn_nightly-20191220.25-cp35-cp35m-manylinux2010_x86_64.whl (890.5 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

giotto_learn_nightly-20191220.25-cp35-cp35m-macosx_10_13_x86_64.whl (628.7 kB view details)

Uploaded CPython 3.5m macOS 10.13+ x86-64

File details

Details for the file giotto-learn-nightly-20191220.25.tar.gz.

File metadata

  • Download URL: giotto-learn-nightly-20191220.25.tar.gz
  • Upload date:
  • Size: 91.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.6.8

File hashes

Hashes for giotto-learn-nightly-20191220.25.tar.gz
Algorithm Hash digest
SHA256 2b3b941c10f6b81f2c1ffe6b64d582d571b73bdb21053026812a649e5d05cbcd
MD5 3a9a52480bd7badf9c5259108618718a
BLAKE2b-256 063f2a4cd22ad2488650e7b955ea0268b3c772f80873d80872dd5e2bf9fa06af

See more details on using hashes here.

File details

Details for the file giotto_learn_nightly-20191220.25-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: giotto_learn_nightly-20191220.25-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 666.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.7.5

File hashes

Hashes for giotto_learn_nightly-20191220.25-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a85f00a7cbef5da91585174a04c441869d2bb570e95a36f8922c0b7cd7c3a287
MD5 c92dd3310aae8c641726068c84ecec5b
BLAKE2b-256 0ddd76a8036418f63139688cd644555eb2ab21281fb0143bee4155d1e78bbd07

See more details on using hashes here.

File details

Details for the file giotto_learn_nightly-20191220.25-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for giotto_learn_nightly-20191220.25-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 277245721ca07357bbdcfdb2017d2082413b57382e35f36c49df1206f35470ae
MD5 ef3d6e09fc6e7b995613efcde11a66a5
BLAKE2b-256 73983561479d65e6c26cfcdd9e653994c03060ca8a1edc30ab73560eba838f6c

See more details on using hashes here.

File details

Details for the file giotto_learn_nightly-20191220.25-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for giotto_learn_nightly-20191220.25-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 011100be76b852c00a408ac9086b5f092533ec3e7db2dd9b058f8bca34001977
MD5 fecf7be0c6e0d44db9592ef32c41060b
BLAKE2b-256 23245f35a467a49bc74b18f5fa63c99a66f02f1fd1c6696c0b147e9cfd47c08c

See more details on using hashes here.

File details

Details for the file giotto_learn_nightly-20191220.25-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: giotto_learn_nightly-20191220.25-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 666.2 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.6.8

File hashes

Hashes for giotto_learn_nightly-20191220.25-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 5d07c8f752af794dde863a460f75c336c20a73ca6af7ab29cc995a9d07a1cdfe
MD5 a702af97c0ae6c404ae0c01a1c2aa9ad
BLAKE2b-256 a31555de739c56cb7acddafe83e42c94c9331cf25b1ae47d972ac1664e9d56b6

See more details on using hashes here.

File details

Details for the file giotto_learn_nightly-20191220.25-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for giotto_learn_nightly-20191220.25-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e958daa3caf54e4be62cbc9a183cca2a8fb5d68717b0d507e9afb927dbe876f3
MD5 225d4440668e43f891dab6b15315948d
BLAKE2b-256 a06a6dbd37a89fc237bdf2d39d030991ba5a0bdea0f76a204cd46bc8bcafe72d

See more details on using hashes here.

File details

Details for the file giotto_learn_nightly-20191220.25-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for giotto_learn_nightly-20191220.25-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 c5f308a46d43fc71ed81e9fd678cea47c15d81cb00a7da016fe85906e080b598
MD5 22543ed028c8c5388cfdb54910d22470
BLAKE2b-256 5f55c88266a723fa740539897612adf888ab15f436b4d58c97eeff6c678cf572

See more details on using hashes here.

File details

Details for the file giotto_learn_nightly-20191220.25-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: giotto_learn_nightly-20191220.25-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 666.2 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.5.4

File hashes

Hashes for giotto_learn_nightly-20191220.25-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 1f5872cb549acb0100ca065a4fd2b1190bb2add4537c84215448fbef0a778063
MD5 057ebb04c5f5da14a009c51429474c34
BLAKE2b-256 2513023ecc1bf54bd3758931cbace7f12f7afd949c2cef226b577e08c89505d4

See more details on using hashes here.

File details

Details for the file giotto_learn_nightly-20191220.25-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for giotto_learn_nightly-20191220.25-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5fc7d6c9aa2e66e955fe58593c643deaf54d19ab8534e98ec56664f96924e685
MD5 ba35c9aa7660ccbe1d75a59c1b42ae16
BLAKE2b-256 66a77166a8691320314af537ac8444e1e1cf93a707088737ac614a81d426c08b

See more details on using hashes here.

File details

Details for the file giotto_learn_nightly-20191220.25-cp35-cp35m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for giotto_learn_nightly-20191220.25-cp35-cp35m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 4a19c12cd2bdab1f7083abe62721b7c9aa859b21c01be2453243f7585c38d869
MD5 12b853c43834f70ac898c226c7a8bb46
BLAKE2b-256 e1253921f8b99c5262bb8989e6d356f37d887c7a2d056135cf5be750cbcd923d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page