Skip to main content

Toolbox for Machine Learning using Topological Data Analysis.

Project description

https://raw.githubusercontent.com/giotto-ai/giotto-tda/master/doc/images/tda_logo.svg

Version Azure-build Azure-cov Azure-test Twitter-follow Slack-join

giotto-tda

giotto-tda is a high-performance topological machine learning toolbox in Python built on top of scikit-learn and is distributed under the GNU AGPLv3 license. It is part of the Giotto family of open-source projects.

Project genesis

giotto-tda is the result of a collaborative effort between L2F SA, the Laboratory for Topology and Neuroscience at EPFL, and the Institute of Reconfigurable & Embedded Digital Systems (REDS) of HEIG-VD.

License

giotto-tda is distributed under the AGPLv3 license. If you need a different distribution license, please contact the L2F team.

Documentation

Please visit https://giotto-ai.github.io/gtda-docs and navigate to the version you are interested in.

Installation

Dependencies

The latest stable version of giotto-tda requires:

  • Python (>= 3.7)

  • NumPy (>= 1.19.1)

  • SciPy (>= 1.5.0)

  • joblib (>= 0.16.0)

  • scikit-learn (>= 0.23.1)

  • pyflagser (>= 0.4.3)

  • python-igraph (>= 0.8.2)

  • plotly (>= 4.8.2)

  • ipywidgets (>= 7.5.1)

To run the examples, jupyter is required.

User installation

The simplest way to install giotto-tda is using pip

python -m pip install -U giotto-tda

If necessary, this will also automatically install all the above dependencies. Note: we recommend upgrading pip to a recent version as the above may fail on very old versions.

Pre-release, experimental builds containing recently added features, and/or bug fixes can be installed by running

python -m pip install -U giotto-tda-nightly

The main difference between giotto-tda-nightly and the developer installation (see the section on contributing, below) is that the former is shipped with pre-compiled wheels (similarly to the stable release) and hence does not require any C++ dependencies. As the main library module is called gtda in both the stable and nightly versions, giotto-tda and giotto-tda-nightly should not be installed in the same environment.

Developer installation

Please consult the dedicated page for detailed instructions on how to build giotto-tda from sources across different platforms.

Contributing

We welcome new contributors of all experience levels. The Giotto community goals are to be helpful, welcoming, and effective. To learn more about making a contribution to giotto-tda, please consult the relevant page.

Testing

After developer installation, you can launch the test suite from outside the source directory

pytest gtda

Citing giotto-tda

If you use giotto-tda in a scientific publication, we would appreciate citations to the following paper:

giotto-tda: A Topological Data Analysis Toolkit for Machine Learning and Data Exploration, Tauzin et al, J. Mach. Learn. Res. 22.39 (2021): 1-6.

You can use the following BibTeX entry:

@article{giotto-tda,
  author  = {Guillaume Tauzin and Umberto Lupo and Lewis Tunstall and Julian Burella P\'{e}rez and Matteo Caorsi and Anibal M. Medina-Mardones and Alberto Dassatti and Kathryn Hess},
  title   = {giotto-tda: A Topological Data Analysis Toolkit for Machine Learning and Data Exploration},
  journal = {Journal of Machine Learning Research},
  year    = {2021},
  volume  = {22},
  number  = {39},
  pages   = {1-6},
  url     = {http://jmlr.org/papers/v22/20-325.html}
}

Community

giotto-ai Slack workspace: https://slack.giotto.ai/

Contacts

maintainers@giotto.ai

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

giotto_tda-0.6.2-cp312-cp312-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

giotto_tda-0.6.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

giotto_tda-0.6.2-cp312-cp312-macosx_10_9_universal2.whl (1.8 MB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

giotto_tda-0.6.2-cp311-cp311-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

giotto_tda-0.6.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

giotto_tda-0.6.2-cp311-cp311-macosx_10_9_universal2.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

giotto_tda-0.6.2-cp310-cp310-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

giotto_tda-0.6.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

giotto_tda-0.6.2-cp310-cp310-macosx_10_9_universal2.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

giotto_tda-0.6.2-cp39-cp39-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

giotto_tda-0.6.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

giotto_tda-0.6.2-cp39-cp39-macosx_10_9_universal2.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

giotto_tda-0.6.2-cp38-cp38-win_amd64.whl (1.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

giotto_tda-0.6.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

giotto_tda-0.6.2-cp38-cp38-macosx_10_9_universal2.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file giotto_tda-0.6.2-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for giotto_tda-0.6.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 388a460559019759656129bc9c0ea3922923371f5eb0d771e5226a244d481e17
MD5 8aace98d98a4740956a3a3e072ddc1ca
BLAKE2b-256 f5dd42912c7088181067cdcfbe0a07b88f441e4f8ded1357515405bd889c3fe8

See more details on using hashes here.

File details

Details for the file giotto_tda-0.6.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for giotto_tda-0.6.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 63066e3ab703b0ba6a49e670c2695b087b079674fbe805e584ec6967a8ff1c71
MD5 3751210081324e488668d9dc73b90bac
BLAKE2b-256 84a8eb05e40723de80d14a2c038030c96aee0a6cbd973ee536b62236f57925b4

See more details on using hashes here.

File details

Details for the file giotto_tda-0.6.2-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for giotto_tda-0.6.2-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 a04ed69e59965baa6e2fe4846725609f0a17084a993f2449e2991d14ed4a1d4e
MD5 35d4e094b5bf2f3f0a42e860b90523c7
BLAKE2b-256 59b3a21ca58442b59738cd25dee5152303550a699189403cf9b221dbb836e0fc

See more details on using hashes here.

File details

Details for the file giotto_tda-0.6.2-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for giotto_tda-0.6.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 15d01edd0d8c667c6d5f2670acc7ea77c7bf65d91309bee0ed5a3e961c20f01c
MD5 d0540e308d59c2cd02d718cf6d98c3a5
BLAKE2b-256 79a85928a0b2074d693e3b0ea400d769fb2f7b25d592dc6115027f49f9391a91

See more details on using hashes here.

File details

Details for the file giotto_tda-0.6.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for giotto_tda-0.6.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 de1691198f468d498e8c0d5f3319511c643e45d3bfa8ad1cdc33e425a1a72ccf
MD5 fd1d0a1166818e8d6c0d61b886e1e7f3
BLAKE2b-256 f46a4cd4e28f616700a643b5d1856e4afcff95e5974d6490e852bb5856101380

See more details on using hashes here.

File details

Details for the file giotto_tda-0.6.2-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for giotto_tda-0.6.2-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 c217bfd5ff43485165e034485858efe8c07cae132957e6ab1871f8718d899978
MD5 aa0c3a1b60e2518259a722f439137f38
BLAKE2b-256 63047491e6c0b4163b5685ffee846e53c9b9be95fae2a88404a171642ffe1c45

See more details on using hashes here.

File details

Details for the file giotto_tda-0.6.2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for giotto_tda-0.6.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 82cbfee25d63df1fe98705b50f33fe8ff7acc2a749cd8e3f669d7a7a6d8ef46b
MD5 db193339120d1daca9b83b4b876daa35
BLAKE2b-256 2026d492d59c2a46ba4546ac2ff2b479cbe956f4fee830cab619592d8e6c68aa

See more details on using hashes here.

File details

Details for the file giotto_tda-0.6.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for giotto_tda-0.6.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f5f36b6ea2fb2f3dc3716760745e612311783a820f30c06b8f34f7cf93b0e834
MD5 35509c1909918e286ae865924792a39d
BLAKE2b-256 2c392c936d8351c096ea9149001b864170695abffb5e1ae58eb2b763e74007d2

See more details on using hashes here.

File details

Details for the file giotto_tda-0.6.2-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for giotto_tda-0.6.2-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 6295e31b53711993f6b3f5ab39518937504a39f5629738f5a90691a7c2004fc8
MD5 1b114db5dd43e20d15f2873d4a1c391b
BLAKE2b-256 fc4bea2071ae3666aa98b9cac2d504927fb10ee2d151d3b5c01c1630597617ed

See more details on using hashes here.

File details

Details for the file giotto_tda-0.6.2-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for giotto_tda-0.6.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 71ea191d17122ad0bbdd5205409e5038ffc677da876c780fd0f6601dc01bd4b9
MD5 96ddb64ed22aaa2947c2b049a4fc6c53
BLAKE2b-256 4a5ac7ae256e9b1cf9ef28ed383fa9231521cee2ccf32298c30ab1e64204b941

See more details on using hashes here.

File details

Details for the file giotto_tda-0.6.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for giotto_tda-0.6.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ebca006ee57d91e7c3db3d357e4e54462e368687f2c754061d82fc83ae153d2e
MD5 9cd5fe0cb2b5495a9a36e29e365470a7
BLAKE2b-256 acf0359ffb24383e3f6c4fea5d1ebe9beccef134a39973422eb1dfc462d4f20f

See more details on using hashes here.

File details

Details for the file giotto_tda-0.6.2-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for giotto_tda-0.6.2-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 c3c206b12e113a5e2fc90fa9564b2ded33cff00f4a141f862a838247791a4fd5
MD5 d1a468fcf43cd4cb156806c3f2cf46f0
BLAKE2b-256 361bea57a6b767bbf6b01c43c40138ee3e9f41bb8d7654dd6479e9e65b05accd

See more details on using hashes here.

File details

Details for the file giotto_tda-0.6.2-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for giotto_tda-0.6.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7a50ebc5be6993e70b99840a4a998147435fa39ab11bd9a44c3f577b6b003893
MD5 8cafcaecfa8e53368e2aad0c65a88aa9
BLAKE2b-256 d1190e790af432cb34b6bc71e9e298ae3f87173b05f6e41d3c65cce74daa47b0

See more details on using hashes here.

File details

Details for the file giotto_tda-0.6.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for giotto_tda-0.6.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 abef37f1e48a2beceba35ac01e063243a2e9cf9e4538c46878b6c90385f74245
MD5 4a66e7965d63e0d07e225a9dcf022aee
BLAKE2b-256 6082677e325b268c1ad7dd9da59a18d7aede31e0a0870996e0bef44deb7e2f4c

See more details on using hashes here.

File details

Details for the file giotto_tda-0.6.2-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for giotto_tda-0.6.2-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d4c8184786ee99b7858f9ec501addf6698133106e48369e10547f7d883bbf1cd
MD5 5e6a7a2c47d1fdac9c5308dcdf2fa6a5
BLAKE2b-256 1f7d379028d2060b5fad31de9c61af6e4dbc0e16ca09072713836967d1144cf7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page