Skip to main content

The giskard_hub library allows you to interact with the Giskard Hub, a platform that centralizes the validation process of LLM applications, empowering product teams to ensure all functional, business & legal requirements are met, and keeping them in close contact with the development team to avoid delayed deployment timelines.

Project description

Giskard Hub Client Library

The Giskard Hub is a platform that centralizes the validation process of LLM applications, empowering product teams to ensure all functional, business & legal requirements are met, and keeping them in close contact with the development team to avoid delayed deployment timelines.

The giskard_hub Python library provides a simple way for developers and data scientists to manage and evaluate LLM applications in their development workflow during the prototyping phase and for continuous integration testing.

Read the quick start guide to get up and running with the giskard_hub library. You will learn how to execute local evaluations from a notebook, script or CLI, and synchronize them to the Giskard Hub platform.

Access the full docs at: https://docs-hub.giskard.ai/

Install the client library

The library is compatible with Python 3.9 to 3.12.

pip install giskard-hub

Create a project and run an evaluation

You can now use the client to interact with the Hub. You will be able to control the Hub programmatically, independently of the UI. Let's start by initializing a client instance:

from giskard_hub import HubClient

hub = HubClient()

You can provide the API key and Hub URL as arguments. Head over to your Giskard Hub instance and click on the user icon in the top right corner. You will find your personal API key, click on the button to copy it.

hub = HubClient(
    api_key="YOUR_GSK_API_KEY",
    hub_url="THE_GSK_HUB_URL",
)

You can now use the hub client to control the LLM Hub! Let's start by creating a fresh project.

Create a project

project = hub.projects.create(
    name="My first project",
    description="This is a test project to get started with the Giskard Hub client library",
)

That's it! You have created a project. You will now see it in the Hub UI project selector.

Tip

If you have an already existing project, you can easily retrieve it. Either use hub.projects.list() to get a list of all projects, or use hub.projects.retrieve("YOUR_PROJECT_ID") to get a specific project.

Import a dataset

Let's now create a dataset and add a conversation example.

# Let's create a dataset
dataset = hub.datasets.create(
    project_id=project.id,
    name="My first dataset",
    description="This is a test dataset",
)

We can now add a conversation example to the dataset. This will be used for the model evaluation.

# Add a conversation example
hub.conversations.create(
    dataset_id=dataset.id,
        messages=[
        dict(role="user", content="What is the capital of France?"),
        dict(role="assistant", content="Paris"),
        dict(role="user", content="What is the capital of Germany?"),
    ],
    expected_output="Berlin",
    demo_output=dict(role="assistant", content="I don't know that!"),
    rules=[
        "The agent should always provide short and concise answers.",
    ],
)

These are the attributes you can set for a conversation (the only required attribute is messages):

  • messages: A list of messages in the conversation. Each message is a dictionary with the following keys:

    • role: The role of the message, either "user" or "assistant".
    • content: The content of the message.
  • expected_output: The expected output of the conversation. This is used for evaluation.

  • rules: A list of rules that the conversation should follow. This is used for evaluation.

  • demo_output: A demonstration of a (possibly wrong) output from the model. This is just for demonstration purposes.

You can add as many conversations as you want to the dataset.

Again, you'll find your newly created dataset in the Hub UI.

Configure a model

Before running our first evaluation, we'll need to set up a model. You'll need an API endpoint ready to serve the model. Then, you can configure the model API in the Hub:

model = hub.models.create(
    project_id=project.id,
    name="My Bot",
    description="A chatbot for demo purposes",
    url="https://my-model-endpoint.example.com/bot_v1",
    supported_languages=["en", "fr"],
    # if your model endpoint needs special headers:
    headers={"X-API-Key": "MY_TOKEN"},
)

We can test that everything is working well by running a chat with the model:

response = model.chat(
    messages=[
        dict(role="user", content="What is the capital of France?"),
        dict(role="assistant", content="Paris"),
        dict(role="user", content="What is the capital of Germany?"),
    ],
)

print(response)

If all is working well, this will return something like

ModelOutput(
    message=ChatMessage(
        role='assistant',
        content='The capital of Germany is Berlin.'
    ),
    metadata={}
)

Run a remote evaluation

We can now launch a remote evaluation of our model!

eval_run = client.evaluate(
    model=model,
    dataset=dataset,
    name="test-run",  # optional
)

The evaluation will run asynchronously on the Hub. To retrieve the results once the run is complete, you can use the following:

# This will block until the evaluation status is "finished"
eval_run.wait_for_completion()

# Print the evaluation metrics
eval_run.print_metrics()

Tip

You can directly pass IDs to the evaluate function, e.g. model=model_id and dataset=dataset_id, without having to retrieve the objects first.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

giskard_hub-1.1.0.tar.gz (18.0 kB view details)

Uploaded Source

Built Distribution

giskard_hub-1.1.0-py3-none-any.whl (23.3 kB view details)

Uploaded Python 3

File details

Details for the file giskard_hub-1.1.0.tar.gz.

File metadata

  • Download URL: giskard_hub-1.1.0.tar.gz
  • Upload date:
  • Size: 18.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.14 Linux/6.5.0-1025-azure

File hashes

Hashes for giskard_hub-1.1.0.tar.gz
Algorithm Hash digest
SHA256 d11452a27c4d24fcc0198f7ffc5ce49bbc5dbeaffe3d5b7ff4c632d67500d615
MD5 37054633430dbd0bbde226849c5dd107
BLAKE2b-256 5a49290c89d0e72ad8ee5ba9c8f92738df03932104837426895c489260cead9c

See more details on using hashes here.

File details

Details for the file giskard_hub-1.1.0-py3-none-any.whl.

File metadata

  • Download URL: giskard_hub-1.1.0-py3-none-any.whl
  • Upload date:
  • Size: 23.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.10.14 Linux/6.5.0-1025-azure

File hashes

Hashes for giskard_hub-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 9cd633ac46d302cc52a7a48d5beaa76dfcb91e44f2f203aa5db93956764fc7e5
MD5 026c7a845c34a00e3e4dcca360ec93b8
BLAKE2b-256 40c0b52a1c6c2d9d61cabfb5636e1d158fcebe84eda9d345504dd381eb19b1d0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page