Gkit is a suit of utilites for processing geo-dataset.
Project description
Gkit
Gkit is a suite of utilities for processing geo-dataset allowing you to manipulate raster datasets like np.MaskedArray.
Gkit supports Python3 and all OS which could install numpy, matplotlib, gdal.
In Python2, may have unpredictable bugs.
Documents: https://titorx.github.io/gkit/html/
Simple Example
Here is examples of some basic features that Gkit provides.
import numpy as np
import gkit as gk
# Read the first band from .tif
r = gk.read("lst.tif")
# You could also specific point out which band you want to load
r = gk.read("lst.tif", 2)
# gk.read returns a Raster class
type(r)
# Output:
# gkit.core.Raster
# Open an interactive window display raster using matplotlib(call plt.show)
r.show()
The screenshot:
# Only draw raster without calling plt.show.
import matplotlib.pylab as plt
r.plot()
plt.xlabel("Lon")
plt.ylabel("Lat")
plt.title("LST(K)")
plt.colorbar()
plt.savefig("raster_plot.png")
The screenshot:
# Raster class inherits from np.ma.MaskedArray.
# It has all features which MaskedArray has.
r
# Output:
# masked_array(data =
# [[-- -- -- ..., -- -- --]
# [-- -- -- ..., -- -- --]
# [-- -- -- ..., -- -- --]
# ...,
# [242.5966339111328 242.6825408935547 242.79612731933594 ...,
# 243.512451171875 243.46498107910156 243.45751953125]
# [241.1952667236328 241.18592834472656 241.19235229492188 ...,
# 241.02757263183594 241.04196166992188 241.0919189453125]
# [241.97023010253906 242.03948974609375 242.05393981933594 ...,
# 241.8543243408203 241.85800170898438 241.80813598632812]],
# mask =
# [[ True True True ..., True True True]
# [ True True True ..., True True True]
# [ True True True ..., True True True]
# ...,
# [False False False ..., False False False]
# [False False False ..., False False False]
# [False False False ..., False False False]],
# fill_value = 1e+20)
# Doing operation like common numpy masked array.
tmp = (r - 273.15)**3 / 4
tmp = np.cos(r)
tmp = np.abs(r)
tmp = np.sqrt(r)
print(r.shape)
print(r.mean())
print(r.max())
print(r.min())
# convert data type
tmp = r.astype(np.float64)
# Save to file
r.save("out_file.tif")
# Create a raster from numpy array
import numpy as np
x, y = np.mgrid[-1:1:100j, -2:2:200j]
array = np.sqrt(x**2 + y**2)
print(array.shape)
# Output:
# (100, 200)
transform = [-100, 0.1, 0, 0, 0, -0.1]
raster = gk.Raster(array, transform)
raster.show()
The screenshot:
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
gkit-0.7.1.tar.gz
(11.1 kB
view details)
File details
Details for the file gkit-0.7.1.tar.gz
.
File metadata
- Download URL: gkit-0.7.1.tar.gz
- Upload date:
- Size: 11.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ec372c55ea5536cdef7e5a0a79279f26214e7eb00b335e4a62e795f1b8175d41 |
|
MD5 | 39f754506454ec50abe4bdb755163888 |
|
BLAKE2b-256 | e42d8c3751007b7292aa2667f0506f4302fa49aaa2459acc1da34e6944152ee9 |