Skip to main content

Gaussian Process for Machine Learning

Project description

glearn is a modular and high-performance Python package for machine learning using Gaussian process regression with novel algorithms capable of petascale computation on multi-GPU devices.

Install

Install with pip

pypi

pip install glearn

Install with conda

conda-version

conda install -c s-ameli glearn

Docker Image

docker-pull deploy-docker

docker pull sameli/glearn

Supported Platforms

Successful installation and tests performed on the following operating systems, architectures, and Python and PyPy versions:

Platform

Arch

Device

Python Version

PyPy Version 1

Continuous Integration

3.9

3.10

3.11

3.12

3.8

3.9

3.10

Linux

X86-64

CPU

build-linux

GPU

AARCH-64

CPU

GPU

macOS

X86-64

CPU

build-macos

GPU

ARM-64

CPU

GPU

Windows

X86-64

CPU

build-windows

GPU

Python wheels for glearn for all supported platforms and versions in the above are available through PyPI and Anaconda Cloud. If you need glearn on other platforms, architectures, and Python or PyPy versions, raise an issue on GitHub and we build its Python Wheel for you.

1. Wheels for PyPy are exclusively available for installation through pip and cannot be installed using conda.
2. Wheels for Windows on ARM-64 architecture are exclusively available for installation through pip and cannot be installed using conda.

Supported GPU Architectures

glearn can run on CUDA-capable multi-GPU devices. Using the docker container is the easiest way to run glearn on GPU devices. The supported GPU micro-architectures and CUDA version are as follows:

Version \ Arch

Fermi

Kepler

Maxwell

Pascal

Volta

Turing

Ampere

Hopper

CUDA 9

CUDA 10

CUDA 11

CUDA 12

Documentation

deploy-docs binder

See documentation, including:

How to Contribute

We welcome contributions via GitHub’s pull request. If you do not feel comfortable modifying the code, we also welcome feature requests and bug reports as GitHub issues.

How to Cite

If you publish work that uses glearn, please consider citing the manuscripts available here.

License

license

This project uses a BSD 3-clause license, in hopes that it will be accessible to most projects. If you require a different license, please raise an issue and we will consider a dual license.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

glearn-0.23.3.tar.gz (181.7 kB view details)

Uploaded Source

Built Distributions

glearn-0.23.3-pp310-pypy310_pp73-win_amd64.whl (886.5 kB view details)

Uploaded PyPy Windows x86-64

glearn-0.23.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

glearn-0.23.3-pp310-pypy310_pp73-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

glearn-0.23.3-pp39-pypy39_pp73-win_amd64.whl (886.1 kB view details)

Uploaded PyPy Windows x86-64

glearn-0.23.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

glearn-0.23.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

glearn-0.23.3-pp38-pypy38_pp73-win_amd64.whl (879.4 kB view details)

Uploaded PyPy Windows x86-64

glearn-0.23.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

glearn-0.23.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

glearn-0.23.3-cp312-cp312-win_amd64.whl (930.7 kB view details)

Uploaded CPython 3.12 Windows x86-64

glearn-0.23.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

glearn-0.23.3-cp312-cp312-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

glearn-0.23.3-cp311-cp311-win_amd64.whl (930.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

glearn-0.23.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

glearn-0.23.3-cp311-cp311-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

glearn-0.23.3-cp310-cp310-win_amd64.whl (938.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

glearn-0.23.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

glearn-0.23.3-cp310-cp310-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

glearn-0.23.3-cp39-cp39-win_amd64.whl (952.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

glearn-0.23.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

glearn-0.23.3-cp39-cp39-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file glearn-0.23.3.tar.gz.

File metadata

  • Download URL: glearn-0.23.3.tar.gz
  • Upload date:
  • Size: 181.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for glearn-0.23.3.tar.gz
Algorithm Hash digest
SHA256 f1c2e2d2be2bf624dc9b536be2f35b95a68c54e3d17f2f9710406a395536f1c0
MD5 edbd3c993088d1afde7cf668594a721b
BLAKE2b-256 43467185edae7dc2945f4de6fea587b9ff7601f2c2825f0057c17f31310e23c9

See more details on using hashes here.

File details

Details for the file glearn-0.23.3-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for glearn-0.23.3-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 6a5571d8f11510d3ac9f5bf1e16ef7f2bda0dc797253765c345e17f279a275a8
MD5 1c99721e44bcd473f49206c427aadaba
BLAKE2b-256 b20d0e1b2ac2803cc2b77de31ae6c96e80862a323c607ea9c3ab53c0ab9b1507

See more details on using hashes here.

File details

Details for the file glearn-0.23.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for glearn-0.23.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 edb47706f535d9119dde2bc529287030fdc4d40330a731ad2e6f4672bdd1772b
MD5 70ab36a72140ba8e8f3838fcdb99dc0b
BLAKE2b-256 15b5a61b31e543bdd9139b1f39f8a0279596002932f08f53ae5e32ed970fd40e

See more details on using hashes here.

File details

Details for the file glearn-0.23.3-pp310-pypy310_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for glearn-0.23.3-pp310-pypy310_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cb97a871125eb0b2f0e7a389f1bf31d4f4658cfe3f931212be2813dd9f769d96
MD5 685148c01cf7195c1843cc261e6ee78c
BLAKE2b-256 b7b0de49299b528f51c3ca01f284526ea67cd9f1bb199e0fda83999da7111c38

See more details on using hashes here.

File details

Details for the file glearn-0.23.3-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for glearn-0.23.3-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 4367c12dbb42e650b7de53eb1965b8899161198e0fcb8255f62e2de40c00d692
MD5 5e0bd8c46489774d760ffee0c8683491
BLAKE2b-256 513b458c93b9cb8c0a20cb38b0da2c04ec9c069b5d5d9287d7df988fe4a9a950

See more details on using hashes here.

File details

Details for the file glearn-0.23.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for glearn-0.23.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 528d34bbd7043771bfb7784de0516c6c6c80c651b408b0dfdcba38b8a5db4b74
MD5 868f70483a27db8c98f3e9e15346a26d
BLAKE2b-256 4e1b864de9aea361cbc0f5ab39ff02cc3f4e8fc3aa222cf2f4812a849bdf1463

See more details on using hashes here.

File details

Details for the file glearn-0.23.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for glearn-0.23.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8a424919b65d310fd40365ae001722cfeee9708e8f6c09f472f56ce7a02f1106
MD5 ce16b34d3ad04975a5d8c5f9233776ba
BLAKE2b-256 76a6bfad9bbb1c5e1ec3101d6b1d3471ce5af36ab13a72e47295a22f541d4694

See more details on using hashes here.

File details

Details for the file glearn-0.23.3-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for glearn-0.23.3-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 d00b4378a4ad5ed43f39060d4fe35e57d8aa519a31319c735acd485ebaf87bc2
MD5 3e78f5d7cd5002806230ccc966d6685d
BLAKE2b-256 7bcf0e3d21a91f22b2063eea5bdd07aa6323a2ea96dda424f710953584333b72

See more details on using hashes here.

File details

Details for the file glearn-0.23.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for glearn-0.23.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8e1c90ad0e1b01b0cf06586a45da4137a630ea4f2ce77ed875f1af4cd45e77c9
MD5 73693dc9ecbad7c2dcfc5ffe8f47b32b
BLAKE2b-256 33f33f28c14714433e98d3b9cd453ab49dd59a73a5ce93b6c93960e0e74350e0

See more details on using hashes here.

File details

Details for the file glearn-0.23.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for glearn-0.23.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 96ed6930c830c46f2cd6d84e02ce8e72698aa1c4111af1d46b464d7e3146f775
MD5 17b37807a03cfe443a1baf706fb03184
BLAKE2b-256 4d7dbe9d316827098291d2c5d2eced23ec82bfe467a336e117a205c68c233d60

See more details on using hashes here.

File details

Details for the file glearn-0.23.3-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: glearn-0.23.3-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 930.7 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for glearn-0.23.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 3e1a024c341e7829e6ea413076eec74b2fefb75342838faf5a36e6ac0aaa82c5
MD5 55fa911545a9c009c89a1b5c775ff0ef
BLAKE2b-256 34b3e3f2ea34e3a643d8d33036ce37dd5e3a2f48c637245e1981a134ea376af3

See more details on using hashes here.

File details

Details for the file glearn-0.23.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for glearn-0.23.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e6585a3f734bfb99efc19b10901f58a8a546f38dc5fa5b3d10d85c481a8fe6cb
MD5 a0db4d9cadd832463d9550af433a2a9f
BLAKE2b-256 0cfdd9e3d06a474e5e4318054a77154e8e02911123491c986a01f78a1a8c3a99

See more details on using hashes here.

File details

Details for the file glearn-0.23.3-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for glearn-0.23.3-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3a6d83866e5c06500d2991778d383f01ce56f80fb4d42f0d711a31f33ce1e476
MD5 1a24fe4839cd310abbc1fcdce3350217
BLAKE2b-256 25b2fa2df01c7e619fa0fdee6b217acf3effd9a07bac451c54af917873a5ea3c

See more details on using hashes here.

File details

Details for the file glearn-0.23.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: glearn-0.23.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 930.4 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for glearn-0.23.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 87adc3258bcea21c835d4df438dbe1385712d7e85371f7fa2c0989899519c9ac
MD5 8fff24eccd771825424720b9ee2e83ae
BLAKE2b-256 9a1a7ba70bc3e0b3e3b134375ff7a2a886cc9b62dc354696fc15e0bc7af4ec1f

See more details on using hashes here.

File details

Details for the file glearn-0.23.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for glearn-0.23.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0040fb9ed86265a067354242c02817864286cc7a40cee6d9c670b9925590104a
MD5 eecbcc248a083320aecb6853922151c5
BLAKE2b-256 1c9a389f219f0c13436e97609b0fceaaab2efa64983e8100fc6748e9023a5c27

See more details on using hashes here.

File details

Details for the file glearn-0.23.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for glearn-0.23.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 da68d8ccea2486027ffae2bf848aba0f5b5e40e771fb34343aae750eb255f53e
MD5 f5db2157a8072039b3c6aad42e49e777
BLAKE2b-256 0f8b1a962a0a084f0726ad6754035c972821004f44ac288e3fa36c1f69ca2c7a

See more details on using hashes here.

File details

Details for the file glearn-0.23.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: glearn-0.23.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 938.6 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for glearn-0.23.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ad6442d129ac65fb0a59bf38101313f199158282c7561c4e033861a421743736
MD5 8a483d2618fa4aa0e48ab6c0c29088d7
BLAKE2b-256 08f97a64d74517c41f7e3036f8da3660dda0d5128c9de68a093f6fbaf27cfa30

See more details on using hashes here.

File details

Details for the file glearn-0.23.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for glearn-0.23.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2502d26f248d1b9a6fb4d0f5b399129def18029564692dab8aade531063ce585
MD5 3fe6245197764d44baafb8eb3f6dfd58
BLAKE2b-256 8c8a1c4f3d984997700f08fdecae36a8164a1cbc18474487a11c7a8476d99ff5

See more details on using hashes here.

File details

Details for the file glearn-0.23.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for glearn-0.23.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1e9209ac2b4993246cc4108856781c3a7eca0c5df624f890c8aac63efecade01
MD5 ef06792d2280c0ce1501dc7f480ca0ae
BLAKE2b-256 dfde17f55e9dd0389ca8b1e132308b9c34e2c530d7d3d9e85308b4d7daf0c5dd

See more details on using hashes here.

File details

Details for the file glearn-0.23.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: glearn-0.23.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 952.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for glearn-0.23.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 31d37ff654573c2740f0163ffb109bdb60b98ccf74519f69d884c16a47807e0d
MD5 6aed639df57afb7a47ad8d20f96a5854
BLAKE2b-256 47c7e304497291a287bb930debe76ed38ab385b38265670076c5d01bedf46cc2

See more details on using hashes here.

File details

Details for the file glearn-0.23.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for glearn-0.23.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 89094b02e5839af06705b06ec8200eb7a77f8affb09e8c1be6552a828eb33e68
MD5 2d2cb570096a63b07b10cd4845993cfb
BLAKE2b-256 94aa7255cd6150454337d8b1b76e800338450e1e77ff644844186673d0444928

See more details on using hashes here.

File details

Details for the file glearn-0.23.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for glearn-0.23.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ffe743b67eb10b8d9dc2e1a3331e87eca9baed124e9bfc95ee21f1ca32ba2630
MD5 647a6bde1be11a774cd316fa59fdcade
BLAKE2b-256 e37b3ac278b81e054e9001921c019483a56562ef0a3b2497d82eed2ebcea0281

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page