Skip to main content

Python tools for running General Lake Model (GLM) simulations

Project description

glm-py

Python tools for running General Lake Model (GLM) simulations.

GLM

GLM is a 1-dimensional lake water balance and stratification model. It can also be coupled with a powerful ecological modelling library to support simulations of lake water quality and ecosystem processes.

GLM is suitable for a wide range of natural and engineered lakes, including shallow (well-mixed) and deep (stratified) systems. The model has been successfully applied to systems from the scale of individual ponds and wetlands to the scale of Great Lakes.

For more information about running GLM, please see the model website's scientific basis description and the GLM workbook.

The GLM model is available as an executable for Linux (Ubuntu), MacOS, and Windows. It is actively developed by the Aquatic EcoDynamics research group at The University of Western Australia.

Why glm-py?

glm-py provides a series of classes, functions, and data structures that support running GLM simulations, preparing model input data and configurations, and processing model outputs.

Its goal is to make running and deploying GLM in a range of environments easy, e.g., building APIs for web applications or cloud services that use GLM, running batches of GLM simulations on HPCs, and running GLM simulations locally within Python environments such as JupyterLab or QGIS.

NML

Classes that store model parameters and methods that generate .nml configuration files for running GLM.

Dimensions

Turns simple user descriptions of lake geometries and dimensions into appropriate morphometry parameters.

GLM_JSON

Tools to convert JSON data to .nml format data. Useful for handling client requests if GLM is deployed within a web API / REST API.

Simulation

Classes to handle running GLM simulations and processing output data into CSV, JSON, NetCDF files, or generating a JSON stream to pass onto clients.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

glm_py-0.2.1.tar.gz (114.2 kB view details)

Uploaded Source

Built Distributions

glm_py-0.2.1-pp310-pypy310_pp73-win_amd64.whl (5.0 MB view details)

Uploaded PyPy Windows x86-64

glm_py-0.2.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

glm_py-0.2.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

glm_py-0.2.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl (6.6 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

glm_py-0.2.1-pp310-pypy310_pp73-macosx_10_9_x86_64.whl (8.2 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

glm_py-0.2.1-pp39-pypy39_pp73-win_amd64.whl (5.0 MB view details)

Uploaded PyPy Windows x86-64

glm_py-0.2.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

glm_py-0.2.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

glm_py-0.2.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl (6.6 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

glm_py-0.2.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (8.2 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

glm_py-0.2.1-cp312-cp312-win_amd64.whl (5.0 MB view details)

Uploaded CPython 3.12 Windows x86-64

glm_py-0.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

glm_py-0.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

glm_py-0.2.1-cp312-cp312-macosx_11_0_arm64.whl (6.6 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

glm_py-0.2.1-cp312-cp312-macosx_10_9_x86_64.whl (8.2 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

glm_py-0.2.1-cp311-cp311-win_amd64.whl (5.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

glm_py-0.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

glm_py-0.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

glm_py-0.2.1-cp311-cp311-macosx_11_0_arm64.whl (6.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

glm_py-0.2.1-cp311-cp311-macosx_10_9_x86_64.whl (8.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

glm_py-0.2.1-cp310-cp310-win_amd64.whl (5.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

glm_py-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

glm_py-0.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

glm_py-0.2.1-cp310-cp310-macosx_11_0_arm64.whl (6.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

glm_py-0.2.1-cp310-cp310-macosx_10_9_x86_64.whl (8.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

glm_py-0.2.1-cp39-cp39-win_amd64.whl (5.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

glm_py-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

glm_py-0.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

glm_py-0.2.1-cp39-cp39-macosx_11_0_arm64.whl (6.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

glm_py-0.2.1-cp39-cp39-macosx_10_9_x86_64.whl (8.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file glm_py-0.2.1.tar.gz.

File metadata

  • Download URL: glm_py-0.2.1.tar.gz
  • Upload date:
  • Size: 114.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for glm_py-0.2.1.tar.gz
Algorithm Hash digest
SHA256 3625a96e74855dffd6121ae9b861f74b9ade5f36d985fb421bf334d2e1bdc8b5
MD5 0850ef5000a7785610f83c2a0a2f27b1
BLAKE2b-256 66c9a53a9d216d6dc04e3e1d0ad8bf93bb8dcacb6320c09c604ad80ce5a4caa4

See more details on using hashes here.

File details

Details for the file glm_py-0.2.1-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for glm_py-0.2.1-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 b4fc0f76e1a32002b2d2038eb2b87b7e1fd03e37c8708ae6a0480211a882804b
MD5 5a1528849cb1ad183b4f28bc1c3767b2
BLAKE2b-256 ae87f5c196438b4fd83e06bcc14d1be69910088408241d0354f011672545a843

See more details on using hashes here.

File details

Details for the file glm_py-0.2.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for glm_py-0.2.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8c2ab4f7441d96743bb232c95376bdbc4c91a419c70fe6cf576bc1549666fc71
MD5 07028fd41e7a0120a839011801b2dde4
BLAKE2b-256 25b32fc36fe651acf84d857e473bd13d8e0f01d060fa0a329d569005d39790a6

See more details on using hashes here.

File details

Details for the file glm_py-0.2.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for glm_py-0.2.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 523f5e45c6452481d028506fe4494107eb2f47a0ef85a25b226d00aea9c5e429
MD5 27da41fbe71dec46c9dd95b374b50553
BLAKE2b-256 c38887a509b896e39ec628c2b053a25496f73649aabe56ce5a364aba88aef066

See more details on using hashes here.

File details

Details for the file glm_py-0.2.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for glm_py-0.2.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 93c70d858bf7c0ccc17fc7c82a7245b9d142badc0ad4a758b2c38b27568e4f97
MD5 b1e5a237234ae1e40478308d37269c61
BLAKE2b-256 8e8becd1583ddb681b19082f246d59c48fd3239b9c70db0228bbe968495db930

See more details on using hashes here.

File details

Details for the file glm_py-0.2.1-pp310-pypy310_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for glm_py-0.2.1-pp310-pypy310_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dce4a2b3bba05a6a9d6305ea6e7c5f358c94bee1319b2471d8524ea02673a53f
MD5 fc77e709864083c019c9492fc89a717f
BLAKE2b-256 35316f76e302c16bd8d65da6cafd57d92073c26287e5cba8f033d076b0626afc

See more details on using hashes here.

File details

Details for the file glm_py-0.2.1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for glm_py-0.2.1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 3a67c8680c138bbea95857035c733aac5b43c0cc0c5ba3f50dbc585bc7287074
MD5 3275f2fcd430c534b9a7ae78c6f62177
BLAKE2b-256 24e79357808b173761b6c31bebf6a5f1d9c3b68355c4f30d64f5508da5a9b7e1

See more details on using hashes here.

File details

Details for the file glm_py-0.2.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for glm_py-0.2.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0cc30584ba38faffabbeb0b9deccca59d1bfc4bd3586eaf408b05587480a1b9f
MD5 afe2f7459d04816bb0add35dac2fd057
BLAKE2b-256 679ae53890a9b39d80be0e438eff284af67e44a6e39d4250e02cbba17d867162

See more details on using hashes here.

File details

Details for the file glm_py-0.2.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for glm_py-0.2.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a766ca132568a7a73e0d9335f58317886339e6e9b078242ee77763b354ade90e
MD5 6060de02f910ed954f0dd21f5a0fd831
BLAKE2b-256 5e33d84641d1d4ad9c120d32752b0f65725c5786489e6f9fce2211b9750140a8

See more details on using hashes here.

File details

Details for the file glm_py-0.2.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for glm_py-0.2.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5e92e750213117a18332b80440eb845e00f9cbb2319acf3697bc7079148d3e26
MD5 63b62fd9fa9d89464f4c8a9b44659607
BLAKE2b-256 7f51bd9284123e6db4a8ca15ab8f3c76a10437fbe50499f081f92c273b2db71e

See more details on using hashes here.

File details

Details for the file glm_py-0.2.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for glm_py-0.2.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6d5283751786314240199d7c7d84dbd0c6b2bb9ddb89fbc7123769838e8f450b
MD5 44c24da7db58ec13900aef6c17dfaf6b
BLAKE2b-256 b641002a906e065a7b6cc0340a61f8034c158f35abbfba6a3c7e1f04d531fe31

See more details on using hashes here.

File details

Details for the file glm_py-0.2.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: glm_py-0.2.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 5.0 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for glm_py-0.2.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 72f40ea5d164d959d9777ea66ca5a8279aaa267941d4abf02348f59b5fe3a943
MD5 e2cedb3dcbd07ed46307528bdb5be172
BLAKE2b-256 d3bc2714d0a1196ffd8b8e1f75373c75ae90b06899ec5143430b7498a12cd35e

See more details on using hashes here.

File details

Details for the file glm_py-0.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for glm_py-0.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1fa774052accf6c72f505d2e2dc944ccd437d83376834e39441c35cc13c82db5
MD5 dede77e5af5c1892e0d70366a8a1c0fe
BLAKE2b-256 528db9b8aa48aeec156db8d8439561dd04c633e6114b5deae9d43aeecced46e1

See more details on using hashes here.

File details

Details for the file glm_py-0.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for glm_py-0.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3cc22d5338aed6c6f97c2d3edafef049106576433c8e49e173e67274833195a3
MD5 ca9c305f850c55f83c594618a254e7fc
BLAKE2b-256 831a777d2e794d3599631bd5b9ce71b279bf6ddc9e3416d11cb66b143e6485bc

See more details on using hashes here.

File details

Details for the file glm_py-0.2.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for glm_py-0.2.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 36c2eb0a36f0c465e8dc19d58d4dfb2a7a315a1c37a9d684ed518dbf01aed9ae
MD5 01359e6df7b086fdce452f2ea95d0d53
BLAKE2b-256 313497e79f143d563a7be675f4b2e8cd7c83c73b7cb14ad0e49d99b1f9eed4f9

See more details on using hashes here.

File details

Details for the file glm_py-0.2.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for glm_py-0.2.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d327bc0c11d2e627aa7ebbd8e4a51d551d4ab78bacc30e2c5f1c046ccd8b61bd
MD5 0e7760ac9a88e6a5c4f934dd20782fa7
BLAKE2b-256 90c04525941197509a9d1fa6000b97cd2302867586840391a9e0840718fdd55c

See more details on using hashes here.

File details

Details for the file glm_py-0.2.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: glm_py-0.2.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 5.0 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for glm_py-0.2.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 9b4251d8aba4ec5be15f5292e7c6704d2913936750237df18f338c8e1a036cc3
MD5 b48c321ed50af87b40ccd189574da06f
BLAKE2b-256 36bdd66ac62219d9346c37f34e1c66bb7460b2d7e4307d0f67514360a9401ea2

See more details on using hashes here.

File details

Details for the file glm_py-0.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for glm_py-0.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a633ba2778585402325b8c30e58dd613a0a0007d4dc600bf837929b03da91c1c
MD5 68cdea02439e33083b4e994f069d14da
BLAKE2b-256 c6f803672d13f0808d7a97093e5cffdf26f6c91579bf935939acbdf60bad203a

See more details on using hashes here.

File details

Details for the file glm_py-0.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for glm_py-0.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3506b07d84ade09a4a583a06672a18192194d7fb3c58ed4d69a836d1b902b164
MD5 a70d50a5a3e043de35fcec26301f3635
BLAKE2b-256 3176cbd0751a1b13e5965d37266ff710c41979e3cba9aac08c19497d6a0b6143

See more details on using hashes here.

File details

Details for the file glm_py-0.2.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for glm_py-0.2.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3a342bdd3f6b3fbddef862b03f061dd366f91c2686e86dfe2374743093f2ac54
MD5 e9e6c2d310879b2b4554facb363db216
BLAKE2b-256 7d4bc08aeb8f197e792ae3088d15bbc163b9341405ccd6cdfa75c8aa7e03d5c5

See more details on using hashes here.

File details

Details for the file glm_py-0.2.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for glm_py-0.2.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d92c87ce21cb457b2ab87feb5b439afcf31b4da3b775dfdf1687e4b6cb53d358
MD5 8dea0d7097be8472dbb631211f9657ee
BLAKE2b-256 fad25bbde4f79e21b20eb6127b0197039e727fe808a158fb391f7e2450c8d762

See more details on using hashes here.

File details

Details for the file glm_py-0.2.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: glm_py-0.2.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 5.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for glm_py-0.2.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a54fcfa89a51cec3f3eb493e737fb9c982248ca41000fb27cdbe8040a84e69f2
MD5 7aed8c16e77194820a16e3f93d80fb2a
BLAKE2b-256 3fdc1e0cddfe32009ab83d17fae4362ef2ffd7cb1872fadac5bfb7bb04b578f7

See more details on using hashes here.

File details

Details for the file glm_py-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for glm_py-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ed8341c0d63b036637aa57ba86d415b9dfd03033b88f6d8573275af2e7dc9624
MD5 3ba9756a674401d8cbd4277a74f2e1e2
BLAKE2b-256 e7705a318f7bd64f4eb11cacd38bd1a2fc537a70a48201a9f930684048d342fa

See more details on using hashes here.

File details

Details for the file glm_py-0.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for glm_py-0.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 24e5ad1eccae4a563776dbd81cb7d6c1dff01131309dfdb0eac5798f88a964ee
MD5 1c358b50dd6cf94f30dcace336956764
BLAKE2b-256 c6c2a3548012b5057e76ec12a137b7385bd1b8e2f152336d7e74b179554b8eb2

See more details on using hashes here.

File details

Details for the file glm_py-0.2.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for glm_py-0.2.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cc23a54e12572d942a69fdd7e3e094aa42bccbac20c483b7b3a7b93f86c33ade
MD5 d6458147dd0e7e30413c11ddda9f07a5
BLAKE2b-256 74c26a8fdf8165061ca9a10e5478eea32574fc337bf12d4c276108826c18a2c4

See more details on using hashes here.

File details

Details for the file glm_py-0.2.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for glm_py-0.2.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 497d08157d6a53b7d74aee2b1003bcd5b043b1f96383afa401207b0fe1fa31df
MD5 0c7ed3d75007f88a698511ad516da2a1
BLAKE2b-256 9ea48f20c7ddd8d5dec3ebe0314f042d4560c8434bc2a9eb3d20d97ebcad64f4

See more details on using hashes here.

File details

Details for the file glm_py-0.2.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: glm_py-0.2.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 5.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for glm_py-0.2.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 92b5a7c7c787674da4d9ce2c7153e23a03d1a286129a9c02a7398c42edbe6a6e
MD5 116e035253d4f429baa948eebea30154
BLAKE2b-256 98f2c47d9c05fef1e71611fd54a040a4986b7495d7f2d7d172fb594ad2d69369

See more details on using hashes here.

File details

Details for the file glm_py-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for glm_py-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bce9f4326256465c5410b8ca0730fe7ababc2ee558d594707a6bcdfd7458038f
MD5 6f239d0d734c251ecaa457e68c6cdc28
BLAKE2b-256 2eca727cb436c701a5889db798cd521ebeee563d848fe159deebf891dd1a3f97

See more details on using hashes here.

File details

Details for the file glm_py-0.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for glm_py-0.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 378a5333ba7dddafaee991bd5d4a9b50fa812210d217be5d29c2705066dbf7db
MD5 3f7a1f17ea452825c626de5b838c1162
BLAKE2b-256 06ba479555bdf7ea2d8879347cec8e94665f7cfee0bd98932524d9786691967f

See more details on using hashes here.

File details

Details for the file glm_py-0.2.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for glm_py-0.2.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 47d0296062c21bb1051db3029a5e604fca63f85f793852228a055fc5b5c3958f
MD5 7622d5ab69081b17d7ba9fdb625db78c
BLAKE2b-256 ae5f009d763feb4401ac571d19e007f15358bd55dc49acef4f4540a63e97666f

See more details on using hashes here.

File details

Details for the file glm_py-0.2.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for glm_py-0.2.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2e405408009f65ac46987c0806e935c7cb8da3446d1a13a9564349067275b9f0
MD5 e1cfe0d7aad84716582e8622bac44903
BLAKE2b-256 7063a7b58a2f16e63901796df104ca2b7591c10b7033dcfadf345ff3c4f1ff75

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page