A binomial classifier based on glmnet
Project description
GlmnetClassifier
A binomial classifier based on glmnet.
Contact
Rolf Carlson hrolfrc@gmail.com
Install
Use pip to install glmnet-classifier.
pip install glmnet-classifier
Introduction
The glmnet-classifier project provides GlmnetClassifier for the classification and prediction for two classes, the binomial case. GlmnetClassifier is based on glmnet. A fortran compiler is required.
GlmnetClassifier is designed for use with scikit-learn pipelines and composite estimators.
Example
from glmnet_classifier import GlmnetClassifier
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
Make a classification problem
seed = 42
X, y = make_classification(
n_samples=30,
n_features=5,
n_informative=2,
n_redundant=2,
n_classes=2,
random_state=seed
)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=seed)
Train the classifier
cls = GlmnetClassifier().fit(X_train, y_train)
Get the score on unseen data
cls.score(X_test, y_test)
1.0
References
References Jerome Friedman, Trevor Hastie and Rob Tibshirani. (2008). Regularization Paths for Generalized Linear Models via Coordinate Descent Journal of Statistical Software, Vol. 33(1), 1-22 Feb 2010.
Noah Simon, Jerome Friedman, Trevor Hastie and Rob Tibshirani. (2011). Regularization Paths for Cox’s Proportional Hazards Model via Coordinate Descent Journal of Statistical Software, Vol. 39(5) 1-13.
Robert Tibshirani, Jacob Bien, Jerome Friedman, Trevor Hastie, Noah Simon, Jonathan Taylor, Ryan J. Tibshirani. (2010). Strong Rules for Discarding Predictors in Lasso-type Problems Journal of the Royal Statistical Society: Series B (Statistical Methodology), 74(2), 245-266.
Noah Simon, Jerome Friedman and Trevor Hastie (2013). A Blockwise Descent Algorithm for Group-penalized Multiresponse and Multinomial Regression
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file glmnet-classifier-0.1.44.tar.gz
.
File metadata
- Download URL: glmnet-classifier-0.1.44.tar.gz
- Upload date:
- Size: 162.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 02e970db059c20109470a41a5211214d00abe9beb1176e3c1db3160883357f62 |
|
MD5 | 34db7b6ba8bf5339a0496fcbf8d383f8 |
|
BLAKE2b-256 | c9bccfe74eca3a8718aef21326789a38314c3915e0a289db220cc10f577fb322 |
File details
Details for the file glmnet_classifier-0.1.44-py3-none-any.whl
.
File metadata
- Download URL: glmnet_classifier-0.1.44-py3-none-any.whl
- Upload date:
- Size: 182.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d801af04ffeda2025e7a22f11b0ab87dfe23277d19daed5004ed1bb65f2af916 |
|
MD5 | 8ae39f58370983734531369117b31f1f |
|
BLAKE2b-256 | 751562b388b1e1cdd28090f038f217ab5393f08b490367c5b62eed7a033d2feb |