Skip to main content

No project description provided

Project description

glnext

High-Performance offscreen rendering for python.

pip install glnext

Examples

import glnext
from glnext_compiler import glsl
from PIL import Image

instance = glnext.instance()
task = instance.task()

framebuffer = task.framebuffer((512, 512))

pipeline = framebuffer.render(
    vertex_shader=glsl('''
        #version 450
        #pragma shader_stage(vertex)

        layout (location = 0) in vec2 in_vert;
        layout (location = 1) in vec3 in_color;

        layout (location = 0) out vec3 out_color;

        void main() {
            gl_Position = vec4(in_vert, 0.0, 1.0);
            out_color = in_color;
        }
    '''),
    fragment_shader=glsl('''
        #version 450
        #pragma shader_stage(fragment)

        layout (location = 0) in vec3 in_color;
        layout (location = 0) out vec4 out_color;

        void main() {
            out_color = vec4(in_color, 1.0);
        }
    '''),
    vertex_format='2f 3f',
    vertex_count=3,
)

pipeline.update(
    vertex_buffer=glnext.pack([
        -0.5, -0.5, 0.0, 0.0, 1.0,
        0.5, -0.5, 0.0, 1.0, 0.0,
        0.0, 0.5, 1.0, 0.0, 0.0,
    ])
)

task.run()
data = framebuffer.output[0].read()
img = Image.frombuffer('RGBA', (512, 512), data)
img.save('hello_world.png')

Windows

With up2date drivers the vulkan runtime binaries should already be on your system. Install the vulkan-sdk if needed.

Linux

Install the vulkan-sdk.

apt-get install libx11-dev

Without GPU

This project is compatible with swiftshader. The CI also runs on pure CPU. (Dockerfile)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

glnext-0.8.1.tar.gz (113.9 kB view details)

Uploaded Source

Built Distributions

glnext-0.8.1-cp39-cp39-win_amd64.whl (37.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

glnext-0.8.1-cp39-cp39-manylinux1_x86_64.whl (162.0 kB view details)

Uploaded CPython 3.9

glnext-0.8.1-cp38-cp38-win_amd64.whl (37.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

glnext-0.8.1-cp38-cp38-manylinux1_x86_64.whl (162.1 kB view details)

Uploaded CPython 3.8

glnext-0.8.1-cp37-cp37m-win_amd64.whl (37.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

glnext-0.8.1-cp37-cp37m-manylinux1_x86_64.whl (161.3 kB view details)

Uploaded CPython 3.7m

glnext-0.8.1-cp36-cp36m-win_amd64.whl (37.5 kB view details)

Uploaded CPython 3.6m Windows x86-64

glnext-0.8.1-cp36-cp36m-manylinux1_x86_64.whl (160.4 kB view details)

Uploaded CPython 3.6m

File details

Details for the file glnext-0.8.1.tar.gz.

File metadata

  • Download URL: glnext-0.8.1.tar.gz
  • Upload date:
  • Size: 113.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for glnext-0.8.1.tar.gz
Algorithm Hash digest
SHA256 f3c4d673be31329435aee53f835e8bd221f8b707f147720b22910681da8a3c69
MD5 a83e97c51b59a699d893eb059e16d960
BLAKE2b-256 91cf00d4c873574699fc62d55ee12d738f9b81b00a823736603402ebe87b5093

See more details on using hashes here.

File details

Details for the file glnext-0.8.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: glnext-0.8.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 37.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for glnext-0.8.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0b72d1148e278f53be46f9290f57367d04c852344edad64702a2a05102217ed2
MD5 6765c0bfd85741c77f66166629f7bd29
BLAKE2b-256 4d7c8f41425be50dee5f158a8a59cd8682eede481f316054af03b299fb26c95c

See more details on using hashes here.

File details

Details for the file glnext-0.8.1-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: glnext-0.8.1-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 162.0 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for glnext-0.8.1-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3c1740680b9073e26ff23b9260ee136b500cf6156ea20a46bd54af8bc59768de
MD5 226a0e7ec98459a0fbc6dc8f4fc26da8
BLAKE2b-256 fba4c08c87ab901f8757f5201ecf817c8bb4bc93ce8135a2a2befc2fff39d5f3

See more details on using hashes here.

File details

Details for the file glnext-0.8.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: glnext-0.8.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 37.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for glnext-0.8.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f0201127b8600b4a005f444d27c9832c450c58a05acd7741e46a84a1309d68ff
MD5 9206884574f49b96f0f014095c79734b
BLAKE2b-256 323384395de7ce72506a30be4c8e9702119ac1ce2c38e9b6bec84ce0f4ac8679

See more details on using hashes here.

File details

Details for the file glnext-0.8.1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: glnext-0.8.1-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 162.1 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for glnext-0.8.1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 fc54590ca3d63792757913bdcc325267c58cc9d999baea29cbc320233bab8502
MD5 6979a49a284fa824e941d252c0826f23
BLAKE2b-256 650d01e371331dd441462bf44cfdaa2681c096725e0cf89f01fb0e7f76c1b63b

See more details on using hashes here.

File details

Details for the file glnext-0.8.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: glnext-0.8.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 37.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for glnext-0.8.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 65c21d7ce4b8594cd1cd6610e2f133e976e3531384e6227bb3580a5fafd5ecf5
MD5 bd307bf41bc32f6ac51719db944618ab
BLAKE2b-256 e74451388c6ec60310713830295feead2f6b7b62762c87f0528e89476458c0a6

See more details on using hashes here.

File details

Details for the file glnext-0.8.1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: glnext-0.8.1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 161.3 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for glnext-0.8.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 96cf7fe966109d36b961f212ddef1c5f8fdfede6e36cffc43d9bef920effc6e7
MD5 5abe71545b99bb64b11f3988afce9480
BLAKE2b-256 c51cbe2a5b7d04fe420830c84cb3bc2e163d7ad4ac78e2ca807eea7272e896fe

See more details on using hashes here.

File details

Details for the file glnext-0.8.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: glnext-0.8.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 37.5 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for glnext-0.8.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 6c7a6f1e5d3cbfb8c67bcb137f96ce5be2f909a18c82369de44d3305a02ffe2a
MD5 0d8a895d73b5688bfb7bb6ac083d239d
BLAKE2b-256 b3d8ec716169946821587b878518198ce9fe5d4bf35eeec7338e683c9ef96b2f

See more details on using hashes here.

File details

Details for the file glnext-0.8.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: glnext-0.8.1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 160.4 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for glnext-0.8.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ed76d3a0aeedb87fb4f614218b27b3dde3931bd5e16d385ce0decaf6b79ba944
MD5 509e851fcd9475793e7d89b1630102e4
BLAKE2b-256 97cebfa7f1eb7cf233be0c9347757fbb3d6c96dbc7aaa4ba2055e355da4b30b1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page