This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description

Code to produce the GlobAlbedo prior from MODIS data, using the MCD43A1 and MCD43A2 MODIS products.

The Python package can be installed using pip or easy_install (it’s available from the cheese shop. Once installed with e.g. pip install globalbedo_prior --user --upgrade, a script called alvedro_prior should appear in your path (this depends on pip/easy_intall doing their work properly). This script can be used to produce a daily prior of BRDF kernel parameters derived from the MODIS products.

The generation of the prior is very simple, and is performed in two stages:

Stage 1
For each pixel, the entire timeseries of 8-daily observations are averaged using a weight derived from the QA flags. This results in a mostly complete 8-daily kernel product, stored as GeoTIFF files. Note that in some regions with cloud problems, there can be empty pixels as no observations are available for the period of interest within the MODIS record. Note that we calculate both the mean and standar deviation of the kernel parameters.
Stage 2
For each day of year and pixel, a simple Laplacian filter in time is used to interpolate temporally. The filter is quite peaky, and its weight decays to 0.5 8 days after the day of interest.

Usage

The usage using the alvedro_prior script is very simple: just stash the MCD43A1 and MCD43A2 files somewhere (no need for fancy directories or anything, although that helps you!), and select a tile. Then decide whether the output will be saved to, and execute a command like this:

nohup alvedro_prior --tile h17v04 --datadir <my_data_directory_root> --outdir <my_output_directory> &

The previous command will search for the MCD43A1/2 files below <my_data_directory_root> that relate to tile h17v04 and save the Stage 1 and Stage 2 priors in <my_output_directory>.

The data

Stage 1 priors are written for each 8 day period in the year, for the three kernels and have two bands: the mean and the “weight” (or inverse of the variance). Stage 2 priors are given per kernel, and have 366 bands, each of them with the prior mean for that particular day. The uncertainty associated with the Stage 2 prior has not been calculated.

Release History

Release History

1.0.2

This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

1.0.1

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

1.0.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Download Files

Download Files

TODO: Brief introduction on what you do with files - including link to relevant help section.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
globalbedo_prior-1.0.2.linux-x86_64.tar.gz (13.9 kB) Copy SHA256 Checksum SHA256 any Dumb Binary Mar 24, 2014
globalbedo_prior-1.0.2.tar.gz (8.3 kB) Copy SHA256 Checksum SHA256 Source Mar 24, 2014

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting