Skip to main content

MXNet Gluon CV Toolkit

Project description

Load GluonCV Models in PyTorch. Simply import gluoncvth to getting better pretrained model than torchvision:

import gluoncvth as gcv
model = gcv.models.resnet50(pretrained=True)

Installation:

pip install gluoncv-torch

Available Models

ImageNet

ImageNet models single-crop error rates, comparing to the torchvision models:

torchvision

gluoncvth

Model

Top-1 error

Top-5 error

Top-1 error

Top-5 error

ResNet18

30.24

10.92

29.06

10.17

ResNet34

26.70

8.58

25.35

7.92

ResNet50

23.85

7.13

22.33

6.18

ResNet101

22.63

6.44

20.80

5.39

ResNet152

21.69

5.94

20.56

5.39

Inception v3

22.55

6.44

21.33

5.61

More models available at GluonCV Image Classification ModelZoo

Semantic Segmentation

Results on Pascal VOC dataset:

Model

Base Network

mIoU

FCN

ResNet101

83.6

PSPNet

ResNet101

85.1

DeepLabV3

ResNet101

86.2

Results on ADE20K dataset:

Model

Base Network

PixAcc

mIoU

FCN

ResNet101

80.6

41.6

PSPNet

ResNet101

80.8

42.9

DeepLabV3

ResNet101

81.1

44.1

Quick Demo

import torch
import gluoncvth

# Get the model
model = gluoncvth.models.get_deeplab_resnet101_ade(pretrained=True)
model.eval()

# Prepare the image
url = 'https://github.com/zhanghang1989/image-data/blob/master/encoding/' + \
    'segmentation/ade20k/ADE_val_00001142.jpg?raw=true'
filename = 'example.jpg'
img = gluoncvth.utils.load_image(
    gluoncvth.utils.download(url, filename)).unsqueeze(0)

# Make prediction
output = model.evaluate(img)
predict = torch.max(output, 1)[1].cpu().numpy() + 1

# Get color pallete for visualization
mask = gluoncvth.utils.get_mask_pallete(predict, 'ade20k')
mask.save('output.png')

More models available at GluonCV Semantic Segmentation ModelZoo

API Reference

ResNet

  • gluoncvth.models.resnet18(pretrained=True)

  • gluoncvth.models.resnet34(pretrained=True)

  • gluoncvth.models.resnet50(pretrained=True)

  • gluoncvth.models.resnet101(pretrained=True)

  • gluoncvth.models.resnet152(pretrained=True)

FCN

  • gluoncvth.models.get_fcn_resnet101_voc(pretrained=True)

  • gluoncvth.models.get_fcn_resnet101_ade(pretrained=True)

PSPNet

  • gluoncvth.models.get_psp_resnet101_voc(pretrained=True)

  • gluoncvth.models.get_psp_resnet101_ade(pretrained=True)

DeepLabV3

  • gluoncvth.models.get_deeplab_resnet101_voc(pretrained=True)

  • gluoncvth.models.get_deeplab_resnet101_ade(pretrained=True)

Why GluonCV?

1. State-of-the-art Implementations

2. Pretrained Models and Tutorials

3. Community Support

We expect this PyTorch inference API for GluonCV models will be beneficial to the entire computer vision comunity.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gluoncv-torch-0.0.3.tar.gz (15.8 kB view details)

Uploaded Source

File details

Details for the file gluoncv-torch-0.0.3.tar.gz.

File metadata

  • Download URL: gluoncv-torch-0.0.3.tar.gz
  • Upload date:
  • Size: 15.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/40.4.3 requests-toolbelt/0.8.0 tqdm/4.23.1 CPython/3.6.4

File hashes

Hashes for gluoncv-torch-0.0.3.tar.gz
Algorithm Hash digest
SHA256 648182fac244703c02b5853b9f34f5d8afc55fb600c3090a55006e7e2f2c09c5
MD5 6986546ecc3f31e79729ee4b32886430
BLAKE2b-256 041ce919d53a5b4d12fc8aeaead5097889eab57a05c92b800d03c0bdded4f220

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page