Skip to main content

MXNet Gluon CV Toolkit

Project description

PyPI PyPI Pre-release Upload Python Package Downloads

PyTorch-Encoding

GluonCV-Torch

Load GluonCV Models in PyTorch. Simply import gluoncvth to getting better pretrained model than torchvision:

import gluoncvth as gcv
model = gcv.models.resnet50(pretrained=True)

Installation:

pip install gluoncv-torch

Available Models

ImageNet

ImageNet models single-crop error rates, comparing to the torchvision models:

torchvision gluoncvth
Model Top-1 error Top-5 error Top-1 error Top-5 error
ResNet18 30.24 10.92 29.06 10.17
ResNet34 26.70 8.58 25.35 7.92
ResNet50 23.85 7.13 22.33 6.18
ResNet101 22.63 6.44 20.80 5.39
ResNet152 21.69 5.94 20.56 5.39
Inception v3 22.55 6.44 21.33 5.61

More models available at GluonCV Image Classification ModelZoo

Semantic Segmentation

Results on Pascal VOC dataset:

Model Base Network mIoU
FCN ResNet101 83.6
PSPNet ResNet101 85.1
DeepLabV3 ResNet101 86.2

Results on ADE20K dataset:

Model Base Network PixAcc mIoU
FCN ResNet101 80.6 41.6
PSPNet ResNet101 80.8 42.9
DeepLabV3 ResNet101 81.1 44.1

Quick Demo

import torch
import gluoncvth

# Get the model
model = gluoncvth.models.get_deeplab_resnet101_ade(pretrained=True)
model.eval()

# Prepare the image
url = 'https://github.com/zhanghang1989/image-data/blob/master/encoding/' + \
    'segmentation/ade20k/ADE_val_00001142.jpg?raw=true'
filename = 'example.jpg'
img = gluoncvth.utils.load_image(
    gluoncvth.utils.download(url, filename)).unsqueeze(0)

# Make prediction
output = model.evaluate(img)
predict = torch.max(output, 1)[1].cpu().numpy() + 1

# Get color pallete for visualization
mask = gluoncvth.utils.get_mask_pallete(predict, 'ade20k')
mask.save('output.png')

More models available at GluonCV Semantic Segmentation ModelZoo

API Reference

ResNet

  • gluoncvth.models.resnet18(pretrained=True)
  • gluoncvth.models.resnet34(pretrained=True)
  • gluoncvth.models.resnet50(pretrained=True)
  • gluoncvth.models.resnet101(pretrained=True)
  • gluoncvth.models.resnet152(pretrained=True)

FCN

  • gluoncvth.models.get_fcn_resnet101_voc(pretrained=True)
  • gluoncvth.models.get_fcn_resnet101_ade(pretrained=True)

PSPNet

  • gluoncvth.models.get_psp_resnet101_voc(pretrained=True)
  • gluoncvth.models.get_psp_resnet101_ade(pretrained=True)

DeepLabV3

  • gluoncvth.models.get_deeplab_resnet101_voc(pretrained=True)
  • gluoncvth.models.get_deeplab_resnet101_ade(pretrained=True)

Why GluonCV?

1. State-of-the-art Implementations

2. Pretrained Models and Tutorials

3. Community Support

We expect this PyTorch inference API for GluonCV models will be beneficial to the entire computer vision comunity.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gluoncv-torch-0.0.5b20200628.tar.gz (15.6 kB view details)

Uploaded Source

Built Distribution

gluoncv_torch-0.0.5b20200628-py3-none-any.whl (21.2 kB view details)

Uploaded Python 3

File details

Details for the file gluoncv-torch-0.0.5b20200628.tar.gz.

File metadata

  • Download URL: gluoncv-torch-0.0.5b20200628.tar.gz
  • Upload date:
  • Size: 15.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.3

File hashes

Hashes for gluoncv-torch-0.0.5b20200628.tar.gz
Algorithm Hash digest
SHA256 9010adab14e2c4c8d2dc0653f21a01ad3f46b0d5b8ae7dc49403ffd5d0dc7a5c
MD5 3459664347750f6ef3aafd633750583d
BLAKE2b-256 7e8b02acc65b8807f65c6ad875c73aaba9f6df82de0227d1d5173d085fa6c5b9

See more details on using hashes here.

File details

Details for the file gluoncv_torch-0.0.5b20200628-py3-none-any.whl.

File metadata

  • Download URL: gluoncv_torch-0.0.5b20200628-py3-none-any.whl
  • Upload date:
  • Size: 21.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.3

File hashes

Hashes for gluoncv_torch-0.0.5b20200628-py3-none-any.whl
Algorithm Hash digest
SHA256 b26a73fc85a8812da84600e954cff5999657e3c6dd46f5286c6273599f8f9bde
MD5 5c58e3cce227f243153291195e110f0c
BLAKE2b-256 bac3989aa2de453827d895584c6cc48774ce1341bb6d95470ec4c26e8fd27c69

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page