Skip to main content

MXNet Gluon CV Toolkit

Project description

PyPI PyPI Pre-release Upload Python Package Downloads

PyTorch-Encoding

GluonCV-Torch

Load GluonCV Models in PyTorch. Simply import gluoncvth to getting better pretrained model than torchvision:

import gluoncvth as gcv
model = gcv.models.resnet50(pretrained=True)

Installation:

pip install gluoncv-torch

Available Models

ImageNet

ImageNet models single-crop error rates, comparing to the torchvision models:

torchvision gluoncvth
Model Top-1 error Top-5 error Top-1 error Top-5 error
ResNet18 30.24 10.92 29.06 10.17
ResNet34 26.70 8.58 25.35 7.92
ResNet50 23.85 7.13 22.33 6.18
ResNet101 22.63 6.44 20.80 5.39
ResNet152 21.69 5.94 20.56 5.39
Inception v3 22.55 6.44 21.33 5.61

More models available at GluonCV Image Classification ModelZoo

Semantic Segmentation

Results on Pascal VOC dataset:

Model Base Network mIoU
FCN ResNet101 83.6
PSPNet ResNet101 85.1
DeepLabV3 ResNet101 86.2

Results on ADE20K dataset:

Model Base Network PixAcc mIoU
FCN ResNet101 80.6 41.6
PSPNet ResNet101 80.8 42.9
DeepLabV3 ResNet101 81.1 44.1

Quick Demo

import torch
import gluoncvth

# Get the model
model = gluoncvth.models.get_deeplab_resnet101_ade(pretrained=True)
model.eval()

# Prepare the image
url = 'https://github.com/zhanghang1989/image-data/blob/master/encoding/' + \
    'segmentation/ade20k/ADE_val_00001142.jpg?raw=true'
filename = 'example.jpg'
img = gluoncvth.utils.load_image(
    gluoncvth.utils.download(url, filename)).unsqueeze(0)

# Make prediction
output = model.evaluate(img)
predict = torch.max(output, 1)[1].cpu().numpy() + 1

# Get color pallete for visualization
mask = gluoncvth.utils.get_mask_pallete(predict, 'ade20k')
mask.save('output.png')

More models available at GluonCV Semantic Segmentation ModelZoo

API Reference

ResNet

  • gluoncvth.models.resnet18(pretrained=True)
  • gluoncvth.models.resnet34(pretrained=True)
  • gluoncvth.models.resnet50(pretrained=True)
  • gluoncvth.models.resnet101(pretrained=True)
  • gluoncvth.models.resnet152(pretrained=True)

FCN

  • gluoncvth.models.get_fcn_resnet101_voc(pretrained=True)
  • gluoncvth.models.get_fcn_resnet101_ade(pretrained=True)

PSPNet

  • gluoncvth.models.get_psp_resnet101_voc(pretrained=True)
  • gluoncvth.models.get_psp_resnet101_ade(pretrained=True)

DeepLabV3

  • gluoncvth.models.get_deeplab_resnet101_voc(pretrained=True)
  • gluoncvth.models.get_deeplab_resnet101_ade(pretrained=True)

Why GluonCV?

1. State-of-the-art Implementations

2. Pretrained Models and Tutorials

3. Community Support

We expect this PyTorch inference API for GluonCV models will be beneficial to the entire computer vision comunity.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gluoncv-torch-0.0.6b20221102.tar.gz (16.0 kB view details)

Uploaded Source

Built Distribution

gluoncv_torch-0.0.6b20221102-py3-none-any.whl (21.2 kB view details)

Uploaded Python 3

File details

Details for the file gluoncv-torch-0.0.6b20221102.tar.gz.

File metadata

File hashes

Hashes for gluoncv-torch-0.0.6b20221102.tar.gz
Algorithm Hash digest
SHA256 861e7544ad073d11d9c4a4d28a0c7dd169e1f8b1c59256c0c6cf7f3c551d1011
MD5 2e3805af67a9c81a6d3174242607a4d5
BLAKE2b-256 c8f334bad3adb9c6d1ef365644290df9a8b2cf87c42964b8cd3be08d3360cfee

See more details on using hashes here.

File details

Details for the file gluoncv_torch-0.0.6b20221102-py3-none-any.whl.

File metadata

File hashes

Hashes for gluoncv_torch-0.0.6b20221102-py3-none-any.whl
Algorithm Hash digest
SHA256 3da76c35b5d74b70a5be8412f15824dc9a907951461c441fe89333eb0284ac4d
MD5 7d8724554c7e918679b416499d313d56
BLAKE2b-256 3da3bb797262089ab5a8423a71147082269f275db935ff10b991bc51d18bb86c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page