Skip to main content

Gluon CV Toolkit

Project description

GluonCV provides implementations of the state-of-the-art (SOTA) deep learning models in computer vision.

It is designed for engineers, researchers, and students to fast prototype products and research ideas based on these models.

Installation

To install, use:

pip install gluoncv mxnet>=1.6.0 --upgrade
# for installing gluoncv with all dependencies
pip install gluoncv[full] mxnet>=1.6.0 --upgrade

To enable different hardware supports such as GPUs, check out mxnet variants.

For example, you can install cuda-11.0 supported mxnet alongside gluoncv:

pip install gluoncv mxnet-cu110>=1.6.0 --upgrade

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gluoncv-0.11.0b20220214.tar.gz (1.0 MB view details)

Uploaded Source

Built Distribution

gluoncv-0.11.0b20220214-py2.py3-none-any.whl (1.3 MB view details)

Uploaded Python 2 Python 3

File details

Details for the file gluoncv-0.11.0b20220214.tar.gz.

File metadata

  • Download URL: gluoncv-0.11.0b20220214.tar.gz
  • Upload date:
  • Size: 1.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.8

File hashes

Hashes for gluoncv-0.11.0b20220214.tar.gz
Algorithm Hash digest
SHA256 be09d2b7ea843b76b0e43f06907a2721141306be3a2d27ede0d9a079f249eecc
MD5 0b0308418d5be11ae04ad93a1012ecee
BLAKE2b-256 838dd0fb005fa5848a3daf82dd9d7031f0bcba512e07504b783c101015d64481

See more details on using hashes here.

File details

Details for the file gluoncv-0.11.0b20220214-py2.py3-none-any.whl.

File metadata

  • Download URL: gluoncv-0.11.0b20220214-py2.py3-none-any.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.8

File hashes

Hashes for gluoncv-0.11.0b20220214-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 63ff21b33b60eb6dcb0c36bd6d23e88e0a9f1327c3a5bbce68a1d0a050bea992
MD5 e49db3bbe86c1076afc72d3516238f6a
BLAKE2b-256 2c9329f7ca5c7ffcd7cc0462e251e98ff09f6986599d4e5b840296be84825175

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page