Skip to main content

MXNet Gluon CV Toolkit

Project description

GluonCV provides implementations of the state-of-the-art (SOTA) deep learning models in computer vision.

It is designed for engineers, researchers, and students to fast prototype products and research ideas based on these models.

Installation

To install, use:

pip install gluoncv mxnet>=1.2.0

To enable different hardware supports such as GPUs, check out mxnet variants.

For example, you can install cuda-9.0 supported mxnet alongside gluoncv:

pip install gluoncv mxnet-cu90>=1.2.0

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gluoncv-0.2.0b20180602.tar.gz (74.7 kB view details)

Uploaded Source

Built Distribution

gluoncv-0.2.0b20180602-py2.py3-none-any.whl (106.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file gluoncv-0.2.0b20180602.tar.gz.

File metadata

File hashes

Hashes for gluoncv-0.2.0b20180602.tar.gz
Algorithm Hash digest
SHA256 b2e87ecbced114259b84efadba5d0b74f9076c1b54dfd058ccf09b8b7023b9fd
MD5 6d6f01dc39e7bc7b23cc780d32615294
BLAKE2b-256 59ccd76d29a40438c284928bc31ad469f84de5dc9b742ffe045ca6da27006804

See more details on using hashes here.

File details

Details for the file gluoncv-0.2.0b20180602-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for gluoncv-0.2.0b20180602-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 90fc02599db18893a557151df9ad40f60fc4d045e8f33d348b29f45e9516e604
MD5 399e61564ad469dc65d46fbdd619da53
BLAKE2b-256 56128426b388cc95de9d5977e81730258dfb533f83ded92d3aa64ec75fe42107

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page