Skip to main content

MXNet Gluon CV Toolkit

Project description

GluonCV provides implementations of the state-of-the-art (SOTA) deep learning models in computer vision.

It is designed for engineers, researchers, and students to fast prototype products and research ideas based on these models.

Installation

To install, use:

pip install gluoncv mxnet>=1.2.0

To enable different hardware supports such as GPUs, check out mxnet variants.

For example, you can install cuda-9.0 supported mxnet alongside gluoncv:

pip install gluoncv mxnet-cu90>=1.2.0

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gluoncv-0.2.0b20180609.tar.gz (75.0 kB view details)

Uploaded Source

Built Distribution

gluoncv-0.2.0b20180609-py2.py3-none-any.whl (107.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file gluoncv-0.2.0b20180609.tar.gz.

File metadata

File hashes

Hashes for gluoncv-0.2.0b20180609.tar.gz
Algorithm Hash digest
SHA256 fc7d57a94e74bd7b21b99f2dd8f6325f2315d3b500ca2933efa747036f566b88
MD5 9daddccfed254d4faa9015ca3628472a
BLAKE2b-256 dd7a29ddc4867ea098cc6681e0a41d1a084b2adef0df028811411ee4f45e18c1

See more details on using hashes here.

File details

Details for the file gluoncv-0.2.0b20180609-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for gluoncv-0.2.0b20180609-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 c5ed6822b1a7a9dca3364b52fafa8558429999d5ab6220f1061ef5e57bfd9597
MD5 060cc9dcaf3c4eae17bea7ae5a8d228e
BLAKE2b-256 da6ba091012dddd8088463af98db6ef488f47218d7ef7aa476a66e23d1a4ecf7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page