Skip to main content

Probabilistic time series modeling in Python.

Project description

GluonTS - Probabilistic Time Series Modeling in Python

PyPI GitHub Static Static PyPI Downloads

GluonTS is a Python package for probabilistic time series modeling, focusing on deep learning based models, based on PyTorch and MXNet.

Installation

GluonTS requires Python 3.7 or newer, and the easiest way to install it is via pip:

# install with support for torch models
pip install "gluonts[torch]"

# install with support for mxnet models
pip install "gluonts[mxnet]"

See the documentation for more info on how GluonTS can be installed.

Simple Example

To illustrate how to use GluonTS, we train a DeepAR-model and make predictions using the airpassengers dataset. The dataset consists of a single time series of monthly passenger numbers between 1949 and 1960. We train the model on the first nine years and make predictions for the remaining three years.

import pandas as pd
import matplotlib.pyplot as plt

from gluonts.dataset.pandas import PandasDataset
from gluonts.dataset.split import split
from gluonts.torch import DeepAREstimator

# Load data from a CSV file into a PandasDataset
df = pd.read_csv(
    "https://raw.githubusercontent.com/AileenNielsen/"
    "TimeSeriesAnalysisWithPython/master/data/AirPassengers.csv",
    index_col=0,
    parse_dates=True,
)
dataset = PandasDataset(df, target="#Passengers")

# Split the data for training and testing
training_data, test_gen = split(dataset, offset=-36)
test_data = test_gen.generate_instances(prediction_length=12, windows=3)

# Train the model and make predictions
model = DeepAREstimator(
    prediction_length=12, freq="M", trainer_kwargs={"max_epochs": 5}
).train(training_data)

forecasts = list(model.predict(test_data.input))

# Plot predictions
plt.plot(df["1954":], color="black")
for forecast in forecasts:
  forecast.plot()
plt.legend(["True values"], loc="upper left", fontsize="xx-large")

[train-test]

Note, the forecasts are displayed in terms of a probability distribution and the shaded areas represent the 50% and 90% prediction intervals.

Contributing

If you wish to contribute to the project, please refer to our contribution guidelines.

Citing

If you use GluonTS in a scientific publication, we encourage you to add the following references to the related papers, in addition to any model-specific references that are relevant for your work:

@article{gluonts_jmlr,
  author  = {Alexander Alexandrov and Konstantinos Benidis and Michael Bohlke-Schneider
    and Valentin Flunkert and Jan Gasthaus and Tim Januschowski and Danielle C. Maddix
    and Syama Rangapuram and David Salinas and Jasper Schulz and Lorenzo Stella and
    Ali Caner Türkmen and Yuyang Wang},
  title   = {{GluonTS: Probabilistic and Neural Time Series Modeling in Python}},
  journal = {Journal of Machine Learning Research},
  year    = {2020},
  volume  = {21},
  number  = {116},
  pages   = {1-6},
  url     = {http://jmlr.org/papers/v21/19-820.html}
}
@article{gluonts_arxiv,
  author  = {Alexandrov, A. and Benidis, K. and Bohlke-Schneider, M. and
    Flunkert, V. and Gasthaus, J. and Januschowski, T. and Maddix, D. C.
    and Rangapuram, S. and Salinas, D. and Schulz, J. and Stella, L. and
    Türkmen, A. C. and Wang, Y.},
  title   = {{GluonTS: Probabilistic Time Series Modeling in Python}},
  journal = {arXiv preprint arXiv:1906.05264},
  year    = {2019}
}

Links

Documentation

References

Tutorials and Workshops

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gluonts-0.13.5.tar.gz (1.3 MB view details)

Uploaded Source

Built Distribution

gluonts-0.13.5-py3-none-any.whl (1.5 MB view details)

Uploaded Python 3

File details

Details for the file gluonts-0.13.5.tar.gz.

File metadata

  • Download URL: gluonts-0.13.5.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for gluonts-0.13.5.tar.gz
Algorithm Hash digest
SHA256 43defd8d6e7fde871179bc144958074f6d7c6a3bcf626c2f7a5d1641b51317bd
MD5 4dd89ed89524cc775badb34b036de3bc
BLAKE2b-256 9c1a83692f2d5c9c8e9fac6e723d448cef396d7db335ffddb40fbd3375429c25

See more details on using hashes here.

File details

Details for the file gluonts-0.13.5-py3-none-any.whl.

File metadata

  • Download URL: gluonts-0.13.5-py3-none-any.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for gluonts-0.13.5-py3-none-any.whl
Algorithm Hash digest
SHA256 20872f7441e571dc8a159088f77a064f56a3325e9bbae1a9e12dc71d9922edae
MD5 f91bf0af88415e300b4d2f9d4e7b042c
BLAKE2b-256 0c71b17df5544465b036e68cc6d0003fcbe5b5118c70c92aa4bfb8c72d5417f1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page