Skip to main content

Probabilistic time series modeling in Python.

Project description

GluonTS - Probabilistic Time Series Modeling in Python

PyPI GitHub Static Static PyPI Downloads

📢 BREAKING NEWS: We released Chronos, a suite of pretrained models for zero-shot time series forecasting. Chronos can generate accurate probabilistic predictions for new time series not seen during training. Check it out here!

GluonTS is a Python package for probabilistic time series modeling, focusing on deep learning based models, based on PyTorch and MXNet.

Installation

GluonTS requires Python 3.7 or newer, and the easiest way to install it is via pip:

# install with support for torch models
pip install "gluonts[torch]"

# install with support for mxnet models
pip install "gluonts[mxnet]"

See the documentation for more info on how GluonTS can be installed.

Simple Example

To illustrate how to use GluonTS, we train a DeepAR-model and make predictions using the airpassengers dataset. The dataset consists of a single time series of monthly passenger numbers between 1949 and 1960. We train the model on the first nine years and make predictions for the remaining three years.

import pandas as pd
import matplotlib.pyplot as plt

from gluonts.dataset.pandas import PandasDataset
from gluonts.dataset.split import split
from gluonts.torch import DeepAREstimator

# Load data from a CSV file into a PandasDataset
df = pd.read_csv(
    "https://raw.githubusercontent.com/AileenNielsen/"
    "TimeSeriesAnalysisWithPython/master/data/AirPassengers.csv",
    index_col=0,
    parse_dates=True,
)
dataset = PandasDataset(df, target="#Passengers")

# Split the data for training and testing
training_data, test_gen = split(dataset, offset=-36)
test_data = test_gen.generate_instances(prediction_length=12, windows=3)

# Train the model and make predictions
model = DeepAREstimator(
    prediction_length=12, freq="M", trainer_kwargs={"max_epochs": 5}
).train(training_data)

forecasts = list(model.predict(test_data.input))

# Plot predictions
plt.plot(df["1954":], color="black")
for forecast in forecasts:
  forecast.plot()
plt.legend(["True values"], loc="upper left", fontsize="xx-large")
plt.show()

[train-test]

Note, the forecasts are displayed in terms of a probability distribution and the shaded areas represent the 50% and 90% prediction intervals.

Contributing

If you wish to contribute to the project, please refer to our contribution guidelines.

Citing

If you use GluonTS in a scientific publication, we encourage you to add the following references to the related papers, in addition to any model-specific references that are relevant for your work:

@article{gluonts_jmlr,
  author  = {Alexander Alexandrov and Konstantinos Benidis and Michael Bohlke-Schneider
    and Valentin Flunkert and Jan Gasthaus and Tim Januschowski and Danielle C. Maddix
    and Syama Rangapuram and David Salinas and Jasper Schulz and Lorenzo Stella and
    Ali Caner Türkmen and Yuyang Wang},
  title   = {{GluonTS: Probabilistic and Neural Time Series Modeling in Python}},
  journal = {Journal of Machine Learning Research},
  year    = {2020},
  volume  = {21},
  number  = {116},
  pages   = {1-6},
  url     = {http://jmlr.org/papers/v21/19-820.html}
}
@article{gluonts_arxiv,
  author  = {Alexandrov, A. and Benidis, K. and Bohlke-Schneider, M. and
    Flunkert, V. and Gasthaus, J. and Januschowski, T. and Maddix, D. C.
    and Rangapuram, S. and Salinas, D. and Schulz, J. and Stella, L. and
    Türkmen, A. C. and Wang, Y.},
  title   = {{GluonTS: Probabilistic Time Series Modeling in Python}},
  journal = {arXiv preprint arXiv:1906.05264},
  year    = {2019}
}

Links

Documentation

References

Tutorials and Workshops

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gluonts-0.16.0.tar.gz (1.3 MB view details)

Uploaded Source

Built Distribution

gluonts-0.16.0-py3-none-any.whl (1.5 MB view details)

Uploaded Python 3

File details

Details for the file gluonts-0.16.0.tar.gz.

File metadata

  • Download URL: gluonts-0.16.0.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for gluonts-0.16.0.tar.gz
Algorithm Hash digest
SHA256 706ae751566f57c8405c604b9d1531652de2237a55f27a004612498d90212918
MD5 95c3c6f04440d27978e2900f58633ad7
BLAKE2b-256 fb552324f99620fbe84eb4d98eae1b8f62b153ed0ff9a503b46e8957cb4c161e

See more details on using hashes here.

File details

Details for the file gluonts-0.16.0-py3-none-any.whl.

File metadata

  • Download URL: gluonts-0.16.0-py3-none-any.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for gluonts-0.16.0-py3-none-any.whl
Algorithm Hash digest
SHA256 6260774b19c8b1908bf698e04f8f85a92715732dec6950da52b91be5544d456b
MD5 bbb8f1a0c8ab42f8f8f9203aad3ba035
BLAKE2b-256 81114ed339d6eec2ef6deadf300fb945bdce1b0e39557fe67fce38966e137416

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page