Skip to main content

GluonTS is a Python toolkit for probabilistic time series modeling, built around MXNet.

Project description

GluonTS - Probabilistic Time Series Modeling in Python

PyPI GitHub

GluonTS is a Python toolkit for probabilistic time series modeling, built around Apache MXNet (incubating).

GluonTS provides utilities for loading and iterating over time series datasets, state of the art models ready to be trained, and building blocks to define your own models and quickly experiment with different solutions.

Installation

GluonTS requires Python 3.6, and the easiest way to install it is via pip:

pip install gluonts

Quick start guide

This simple example illustrates how to train a model from GluonTS on some data, and then use it to make predictions. As a first step, we need to collect some data: in this example we will use the volume of tweets mentioning the AMZN ticker symbol.

import pandas as pd
url = "https://raw.githubusercontent.com/numenta/NAB/master/data/realTweets/Twitter_volume_AMZN.csv"
df = pd.read_csv(url, header=0, index_col=0)

The first 100 data points look like follows:

import matplotlib.pyplot as plt
df[:100].plot(linewidth=2)
plt.grid(which='both')
plt.show()

Data

We can now prepare a training dataset for our model to train on. Datasets in GluonTS are essentially iterable collections of dictionaries: each dictionary represents a time series with possibly associated features. For this example, we only have one entry, specified by the "start" field which is the timestamp of the first datapoint, and the "target" field containing time series data. For training, we will use data up to midnight on April 5th, 2015.

from gluonts.dataset.common import ListDataset
training_data = ListDataset(
    [{"start": df.index[0], "target": df.value[:"2015-04-05 00:00:00"]}],
    freq = "5min"
)

A forecasting model in GluonTS is a predictor object. One way of obtaining predictors is by training a correspondent estimator. Instantiating an estimator requires specifying the frequency of the time series that it will handle, as well as the number of time steps to predict. In our example we're using 5 minutes data, so freq="5min", and we will train a model to predict the next hour, so prediction_length=12. We also specify some minimal training options.

from gluonts.model.deepar import DeepAREstimator
from gluonts.trainer import Trainer

estimator = DeepAREstimator(freq="5min", prediction_length=12, trainer=Trainer(epochs=10))
predictor = estimator.train(training_data=training_data)

During training, useful information about the progress will be displayed. To get a full overview of the available options, please refer to the documentation of DeepAREstimator (or other estimators) and Trainer.

We're now ready to make predictions: we will forecast the hour following the midnight on April 15th, 2015.

test_data = ListDataset(
    [{"start": df.index[0], "target": df.value[:"2015-04-15 00:00:00"]}],
    freq = "5min"
)

from gluonts.dataset.util import to_pandas

for test_entry, forecast in zip(test_data, predictor.predict(test_data)):
    to_pandas(test_entry)[-60:].plot(linewidth=2)
    forecast.plot(color='g', prediction_intervals=[50.0, 90.0])
plt.grid(which='both')

Forecast

Note that the forecast is displayed in terms of a probability distribution: the shaded areas represent the 50% and 90% prediction intervals, respectively, centered around the median (dark green line).

Further examples

The following are good entry-points to understand how to use many features of GluonTS:

The following modules illustrate how custom models can be implemented:

Contributing

If you wish to contribute to the project, please refer to our contribution guidelines.

Citing

If you use GluonTS in a scientific publication, we encourage you to add the following reference to the associated paper:

@article{gluonts,
  title={{GluonTS: Probabilistic Time Series Modeling in Python}},
  author={Alexandrov, A. and Benidis, K. and Bohlke-Schneider, M. and
          Flunkert, V. and Gasthaus, J. and Januschowski, T. and Maddix, D. C.
          and Rangapuram, S. and Salinas, D. and Schulz, J. and Stella, L. and
          Türkmen, A. C. and Wang, Y.},
  journal={arXiv preprint arXiv:1906.05264},
  year={2019}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gluonts-0.3.0.tar.gz (684.6 kB view details)

Uploaded Source

Built Distribution

gluonts-0.3.0-py3-none-any.whl (260.1 kB view details)

Uploaded Python 3

File details

Details for the file gluonts-0.3.0.tar.gz.

File metadata

  • Download URL: gluonts-0.3.0.tar.gz
  • Upload date:
  • Size: 684.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.1

File hashes

Hashes for gluonts-0.3.0.tar.gz
Algorithm Hash digest
SHA256 6971fdff639dd40c61ea61f9de577d723fc652c037bfc177f20192d3bcf95340
MD5 593dd94d0d67b26e772e9ae2a95317ed
BLAKE2b-256 935065910d3b527499832eff4ec1c750eeb4e7042b69ea7ec35a51662da036ee

See more details on using hashes here.

File details

Details for the file gluonts-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: gluonts-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 260.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.1

File hashes

Hashes for gluonts-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 965c07a54fc62c139f4ce9d1443c8b1d47ddf4e7aefb929369703330c0f6fa66
MD5 b2a6757a8cdda13beb670c77d7637079
BLAKE2b-256 b400571b159f09f08eebd28b3e2f22d2acf7228bf0be0c3c3a731f7262e32a4a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page