Skip to main content

GluonTS is a Python toolkit for probabilistic time series modeling, built around MXNet.

Project description

GluonTS - Probabilistic Time Series Modeling in Python

PyPI GitHub Static Static

GluonTS is a Python toolkit for probabilistic time series modeling, built around Apache MXNet (incubating).

GluonTS provides utilities for loading and iterating over time series datasets, state of the art models ready to be trained, and building blocks to define your own models and quickly experiment with different solutions.

Installation

GluonTS requires Python 3.6, and the easiest way to install it is via pip:

pip install --upgrade mxnet==1.6 gluonts

Quick start guide

This simple example illustrates how to train a model from GluonTS on some data, and then use it to make predictions. As a first step, we need to collect some data: in this example we will use the volume of tweets mentioning the AMZN ticker symbol.

import pandas as pd
url = "https://raw.githubusercontent.com/numenta/NAB/master/data/realTweets/Twitter_volume_AMZN.csv"
df = pd.read_csv(url, header=0, index_col=0)

The first 100 data points look like follows:

import matplotlib.pyplot as plt
df[:100].plot(linewidth=2)
plt.grid(which='both')
plt.show()

Data

We can now prepare a training dataset for our model to train on. Datasets in GluonTS are essentially iterable collections of dictionaries: each dictionary represents a time series with possibly associated features. For this example, we only have one entry, specified by the "start" field which is the timestamp of the first datapoint, and the "target" field containing time series data. For training, we will use data up to midnight on April 5th, 2015.

from gluonts.dataset.common import ListDataset
training_data = ListDataset(
    [{"start": df.index[0], "target": df.value[:"2015-04-05 00:00:00"]}],
    freq = "5min"
)

A forecasting model in GluonTS is a predictor object. One way of obtaining predictors is by training a correspondent estimator. Instantiating an estimator requires specifying the frequency of the time series that it will handle, as well as the number of time steps to predict. In our example we're using 5 minutes data, so freq="5min", and we will train a model to predict the next hour, so prediction_length=12. We also specify some minimal training options.

from gluonts.model.deepar import DeepAREstimator
from gluonts.trainer import Trainer

estimator = DeepAREstimator(freq="5min", prediction_length=12, trainer=Trainer(epochs=10))
predictor = estimator.train(training_data=training_data)

During training, useful information about the progress will be displayed. To get a full overview of the available options, please refer to the documentation of DeepAREstimator (or other estimators) and Trainer.

We're now ready to make predictions: we will forecast the hour following the midnight on April 15th, 2015.

test_data = ListDataset(
    [{"start": df.index[0], "target": df.value[:"2015-04-15 00:00:00"]}],
    freq = "5min"
)

from gluonts.dataset.util import to_pandas

for test_entry, forecast in zip(test_data, predictor.predict(test_data)):
    to_pandas(test_entry)[-60:].plot(linewidth=2)
    forecast.plot(color='g', prediction_intervals=[50.0, 90.0])
plt.grid(which='both')

Forecast

Note that the forecast is displayed in terms of a probability distribution: the shaded areas represent the 50% and 90% prediction intervals, respectively, centered around the median (dark green line).

Further examples

The following are good entry-points to understand how to use many features of GluonTS:

The following modules illustrate how custom models can be implemented:

Contributing

If you wish to contribute to the project, please refer to our contribution guidelines.

Citing

If you use GluonTS in a scientific publication, we encourage you to add the following reference to the associated paper:

@article{gluonts,
  title={{GluonTS: Probabilistic Time Series Modeling in Python}},
  author={Alexandrov, A. and Benidis, K. and Bohlke-Schneider, M. and
          Flunkert, V. and Gasthaus, J. and Januschowski, T. and Maddix, D. C.
          and Rangapuram, S. and Salinas, D. and Schulz, J. and Stella, L. and
          Türkmen, A. C. and Wang, Y.},
  journal={arXiv preprint arXiv:1906.05264},
  year={2019}
}

Further Reading

Project details


Release history Release notifications | RSS feed

This version

0.5.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gluonts-0.5.1.tar.gz (825.6 kB view details)

Uploaded Source

Built Distribution

gluonts-0.5.1-py3-none-any.whl (419.8 kB view details)

Uploaded Python 3

File details

Details for the file gluonts-0.5.1.tar.gz.

File metadata

  • Download URL: gluonts-0.5.1.tar.gz
  • Upload date:
  • Size: 825.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for gluonts-0.5.1.tar.gz
Algorithm Hash digest
SHA256 c566dc9c3ef11afa1d08c5151eb3088c2d6fd7bd32c358819d89573b72ff2523
MD5 21ab4dc6665f7dd0acf8653d129483e2
BLAKE2b-256 8cb95353f67b849ee5a191bd1c5514eee948a0fd07e9f961a3d5b9c74ad5a224

See more details on using hashes here.

File details

Details for the file gluonts-0.5.1-py3-none-any.whl.

File metadata

  • Download URL: gluonts-0.5.1-py3-none-any.whl
  • Upload date:
  • Size: 419.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for gluonts-0.5.1-py3-none-any.whl
Algorithm Hash digest
SHA256 31bea7b2767464cbe3968e569e97cbcd206d6f5af5bd23587eccfe0622fae129
MD5 617b7a3bc89c929a43922c96273021e2
BLAKE2b-256 e5a3828eccc0b359dde80d65909162c543b12b6277e8f8eedabccbff42d6516f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page