Skip to main content

GluonTS is a Python toolkit for probabilistic time series modeling, built around MXNet.

Project description

GluonTS - Probabilistic Time Series Modeling in Python

PyPI GitHub Static Static

GluonTS is a Python toolkit for probabilistic time series modeling, built around Apache MXNet (incubating).

GluonTS provides utilities for loading and iterating over time series datasets, state of the art models ready to be trained, and building blocks to define your own models and quickly experiment with different solutions.

Installation

GluonTS requires Python 3.6, and the easiest way to install it is via pip:

pip install --upgrade mxnet~=1.7 gluonts

Dockerfiles

Dockerfiles compatible with Amazon Sagemaker can be found in the examples/dockerfiles folder.

Quick start guide

This simple example illustrates how to train a model from GluonTS on some data, and then use it to make predictions. As a first step, we need to collect some data: in this example we will use the volume of tweets mentioning the AMZN ticker symbol.

import pandas as pd
url = "https://raw.githubusercontent.com/numenta/NAB/master/data/realTweets/Twitter_volume_AMZN.csv"
df = pd.read_csv(url, header=0, index_col=0)

The first 100 data points look like follows:

import matplotlib.pyplot as plt
df[:100].plot(linewidth=2)
plt.grid(which='both')
plt.show()

Data

We can now prepare a training dataset for our model to train on. Datasets in GluonTS are essentially iterable collections of dictionaries: each dictionary represents a time series with possibly associated features. For this example, we only have one entry, specified by the "start" field which is the timestamp of the first datapoint, and the "target" field containing time series data. For training, we will use data up to midnight on April 5th, 2015.

from gluonts.dataset.common import ListDataset
training_data = ListDataset(
    [{"start": df.index[0], "target": df.value[:"2015-04-05 00:00:00"]}],
    freq = "5min"
)

A forecasting model in GluonTS is a predictor object. One way of obtaining predictors is by training a correspondent estimator. Instantiating an estimator requires specifying the frequency of the time series that it will handle, as well as the number of time steps to predict. In our example we're using 5 minutes data, so freq="5min", and we will train a model to predict the next hour, so prediction_length=12. We also specify some minimal training options.

from gluonts.model.deepar import DeepAREstimator
from gluonts.mx.trainer import Trainer

estimator = DeepAREstimator(freq="5min", prediction_length=12, trainer=Trainer(epochs=10))
predictor = estimator.train(training_data=training_data)

During training, useful information about the progress will be displayed. To get a full overview of the available options, please refer to the documentation of DeepAREstimator (or other estimators) and Trainer.

We're now ready to make predictions: we will forecast the hour following the midnight on April 15th, 2015.

test_data = ListDataset(
    [{"start": df.index[0], "target": df.value[:"2015-04-15 00:00:00"]}],
    freq = "5min"
)

from gluonts.dataset.util import to_pandas

for test_entry, forecast in zip(test_data, predictor.predict(test_data)):
    to_pandas(test_entry)[-60:].plot(linewidth=2)
    forecast.plot(color='g', prediction_intervals=[50.0, 90.0])
plt.grid(which='both')

Forecast

Note that the forecast is displayed in terms of a probability distribution: the shaded areas represent the 50% and 90% prediction intervals, respectively, centered around the median (dark green line).

Further examples

The following are good entry-points to understand how to use many features of GluonTS:

The following modules illustrate how custom models can be implemented:

Contributing

If you wish to contribute to the project, please refer to our contribution guidelines.

Citing

If you use GluonTS in a scientific publication, we encourage you to add the following references to the related papers:

@article{gluonts_jmlr,
  author  = {Alexander Alexandrov and Konstantinos Benidis and Michael Bohlke-Schneider
    and Valentin Flunkert and Jan Gasthaus and Tim Januschowski and Danielle C. Maddix
    and Syama Rangapuram and David Salinas and Jasper Schulz and Lorenzo Stella and
    Ali Caner Türkmen and Yuyang Wang},
  title   = {{GluonTS: Probabilistic and Neural Time Series Modeling in Python}},
  journal = {Journal of Machine Learning Research},
  year    = {2020},
  volume  = {21},
  number  = {116},
  pages   = {1-6},
  url     = {http://jmlr.org/papers/v21/19-820.html}
}
@article{gluonts_arxiv,
  author  = {Alexandrov, A. and Benidis, K. and Bohlke-Schneider, M. and
    Flunkert, V. and Gasthaus, J. and Januschowski, T. and Maddix, D. C.
    and Rangapuram, S. and Salinas, D. and Schulz, J. and Stella, L. and
    Türkmen, A. C. and Wang, Y.},
  title   = {{GluonTS: Probabilistic Time Series Modeling in Python}},
  journal = {arXiv preprint arXiv:1906.05264},
  year    = {2019}
}

Video

Further Reading

Overview tutorials

Introductory material

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gluonts-0.7.2.tar.gz (1.2 MB view details)

Uploaded Source

Built Distribution

gluonts-0.7.2-py3-none-any.whl (896.7 kB view details)

Uploaded Python 3

File details

Details for the file gluonts-0.7.2.tar.gz.

File metadata

  • Download URL: gluonts-0.7.2.tar.gz
  • Upload date:
  • Size: 1.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.1

File hashes

Hashes for gluonts-0.7.2.tar.gz
Algorithm Hash digest
SHA256 32633d95b2d244d3d8bf0e831f50e643fa4f7b5812f14c825edffcc294faf81f
MD5 85f015046a30a3c2ef336c23bd5333da
BLAKE2b-256 95723869147ec6b589d6f7e376b643c4cbce11aa2f063caf1a66d1d903300dab

See more details on using hashes here.

File details

Details for the file gluonts-0.7.2-py3-none-any.whl.

File metadata

  • Download URL: gluonts-0.7.2-py3-none-any.whl
  • Upload date:
  • Size: 896.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.1

File hashes

Hashes for gluonts-0.7.2-py3-none-any.whl
Algorithm Hash digest
SHA256 4fbb4e06734a573c789ea02b0ff9f1cffedf6ed668dc61e1730c603bb36cb2b9
MD5 934e2fa6926aa4f876733159c40bfb83
BLAKE2b-256 bb7ce8d5b5b16774f4cb1b06ae307516d52c3dbac891d5975b5cafc003d2998b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page