Skip to main content

Glycopeptide fragmentation modeling tools

Project description

glycopeptide_feature_learning

Tools for modeling how glycopeptides fragment during collisional dissociation for mass spectra.

This project is part of glycresoft.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distributions

glycopeptide_feature_learning-0.1.0rc0-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

glycopeptide_feature_learning-0.1.0rc0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

glycopeptide_feature_learning-0.1.0rc0-cp310-cp310-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

glycopeptide_feature_learning-0.1.0rc0-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

glycopeptide_feature_learning-0.1.0rc0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

glycopeptide_feature_learning-0.1.0rc0-cp39-cp39-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

glycopeptide_feature_learning-0.1.0rc0-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

glycopeptide_feature_learning-0.1.0rc0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

glycopeptide_feature_learning-0.1.0rc0-cp38-cp38-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

File details

Details for the file glycopeptide_feature_learning-0.1.0rc0.tar.gz.

File metadata

File hashes

Hashes for glycopeptide_feature_learning-0.1.0rc0.tar.gz
Algorithm Hash digest
SHA256 d487015ab96402c50370baacad06db054482784d921459879224a6dde6a267b3
MD5 e4b5f471ee0ce3c217c70fafa6576461
BLAKE2b-256 fd5f51b8463e6c26c6c9757d4772d44d1391e7a456d23350522f9bda6db1e123

See more details on using hashes here.

File details

Details for the file glycopeptide_feature_learning-0.1.0rc0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for glycopeptide_feature_learning-0.1.0rc0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 dab8aa27f435adc56a4ee8a2d4ba6e8b545d289b3e7310f9e8581529b06dd43f
MD5 1eb47d925dca9339bf827cae99d6a1af
BLAKE2b-256 8b6308935884dae03e9ce4c7eceaf7ec3ed23b80bd08dcac19cc854668b46f0e

See more details on using hashes here.

File details

Details for the file glycopeptide_feature_learning-0.1.0rc0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for glycopeptide_feature_learning-0.1.0rc0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b827c0b3849b0315ff9bb951e2de666532a06e3dd550c732d00eeda0b83f632b
MD5 76c3157b30b88a394448ded63c1933a1
BLAKE2b-256 8c39f82d26c0a247ece075a49ba694f14dcd85664aa0ad78d63408cc84c8ba73

See more details on using hashes here.

File details

Details for the file glycopeptide_feature_learning-0.1.0rc0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for glycopeptide_feature_learning-0.1.0rc0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7f3c7157a7f1d4a3e7d2ffd07c44415bc46dc3e6a70f7eae6cb0b38aa83ee427
MD5 ddb3e8214e839cddfababd95f00fe496
BLAKE2b-256 390607a2d8ba3919e6bd983a8971e4248f9de1263e164e64f51f69b2a70231ed

See more details on using hashes here.

File details

Details for the file glycopeptide_feature_learning-0.1.0rc0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for glycopeptide_feature_learning-0.1.0rc0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e3249fdf1dd660461bfccd429ceff2941c9e7cf8325dcd4b6ace4160e34d74e3
MD5 a329d231f3b254c78f9da3d8b421fc8d
BLAKE2b-256 ed99bbe3d5558893029bd2b7779716734e289c699b8842280876292dc5ac192b

See more details on using hashes here.

File details

Details for the file glycopeptide_feature_learning-0.1.0rc0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for glycopeptide_feature_learning-0.1.0rc0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 426dc93c5bf1c9a6a64ee2b24f4bb4c221e08f058bfb1fe87433278cfc1b4ec3
MD5 342062dd8e973ac62cbd022efd3bd70a
BLAKE2b-256 d29afa7ec2922a2dac89ced30f6ec63270fccb93836b64ba6efbcaf0edd1472a

See more details on using hashes here.

File details

Details for the file glycopeptide_feature_learning-0.1.0rc0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for glycopeptide_feature_learning-0.1.0rc0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c0c15ef6dda441e3b72a4888857c528807c400a1a3705f5752d58494a1ae5459
MD5 b90542b4305945a2589a0f26fa05cf8a
BLAKE2b-256 bda2fb8919e8f4274f490bec2238bf60f608828b91160e8bb78a0af9c58c0c7d

See more details on using hashes here.

File details

Details for the file glycopeptide_feature_learning-0.1.0rc0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for glycopeptide_feature_learning-0.1.0rc0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d4270af381b9d1116af0818d6a7d65863d2df3d3bafa4ada55b6449f15e932ba
MD5 cd2ce98c9efba82a27874f1150b755f6
BLAKE2b-256 0c6b00e93624b8c646a05adc3b42f833c86b94bc925b53701f212ecd8b8d36c2

See more details on using hashes here.

File details

Details for the file glycopeptide_feature_learning-0.1.0rc0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for glycopeptide_feature_learning-0.1.0rc0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0ec8ead6516768f22241ec81a3b8371943d9fab4219210151303674dca8f4ae9
MD5 5713eced417b72d506ee7fbefff700d7
BLAKE2b-256 9faefa2d21cf27ae5da28a112ee71751583ba1f0c073dfb1dd149214d47f7a05

See more details on using hashes here.

File details

Details for the file glycopeptide_feature_learning-0.1.0rc0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for glycopeptide_feature_learning-0.1.0rc0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 905996852b61a663d04684f1a89e931745aa42ac1935c24a76df2ad5e1b9f32a
MD5 5d81a14195e617cff952282ef2f9aacf
BLAKE2b-256 8dab736f6619cb4a943bc9d8f856a132c10743ced476bd5b0b51a94a0704b446

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page