Package for processing and analyzing glycans
Project description
glycowork
Glycans are fundamental biological sequences that are as crucial as DNA, RNA, and proteins. As complex carbohydrates forming branched structures, glycans are ubiquitous yet often overlooked in biological research.
Why Glycans are Important
- Ubiquitous in biology
- Integral to protein and lipid function
- Relevant to human diseases
Challenges in Glycan Analysis
Analyzing glycans is complicated due to their non-linear structures and
enormous diversity. But that’s where glycowork
comes in.
Introducing glycowork: Your Solution for Glycan-Focused Data Science
Glycowork is a Python package specifically designed to simplify glycan sequence processing and analysis. It offers:
- Functions for glycan analysis
- Datasets for model training
- Full support for IUPAC-condensed string representation. Broad support for IUPAC-extended, LinearCode, Oxford, GlycoCT, and WURCS.
- Powerful graph-based architecture for in-depth analysis
Documentation: https://bojarlab.github.io/glycowork/
Contribute: Interested in contributing? Read our Contribution Guidelines
Citation: If glycowork
adds value to your project, please cite
Thomes et al.,
2021
Install
Not familiar with Python? Try our no-code, graphical user
interface (glycoworkGUI.exe
, can be downloaded at the bottom of the
latest Release page)
for accessing some of the most useful glycowork
functions!
via pip:
pip install glycowork
import glycowork
alternative:
pip install git+https://github.com/BojarLab/glycowork.git
import glycowork
Note that we have optional extra installs for specialized use (even
further instructions can be found in the Examples
tab), such as:
deep learning
pip install glycowork[ml]
drawing
glycan images with GlycoDraw (see install instructions in the Examples
tab)
pip install glycowork[draw]
analyzing atomic/chemical
properties of glycans
pip install glycowork[chem]
everything
pip install glycowork[all]
Data & Models
Glycowork
currently contains the following main datasets that are
freely available to everyone:
df_glycan
- contains ~50,500 unique glycan sequences, including labels such as ~39,500 species associations, ~19,000 tissue associations, and ~2,500 disease associations
glycan_binding
- contains >580,000 protein-glycan binding interactions, from 1,465 unique glycan-binding proteins
Additionally, we store these trained deep learning models for easy
usage, which can be retrieved with the prep_model
function:
LectinOracle
- can be used to predict glycan-binding specificity of a protein, given its ESM-1b representation; from Lundstrom et al., 2021
LectinOracle_flex
- operates the same as LectinOracle but can directly use the raw protein sequence as input (no ESM-1b representation required)
SweetNet
- a graph convolutional neural network trained to predict species from glycan, can be used to generate learned glycan representations; from Burkholz et al., 2021
NSequonPred
- given the ESM-1b representation of an N-sequon (+/- 20 AA), this model can predict whether the sequon will be glycosylated
How to use
Glycowork
currently contains four main modules:
glycan_data
- stores several glycan datasets and contains helper functions
ml
- here are all the functions for training and using machine learning models, including train-test-split, getting glycan representations, etc.
motif
- contains functions for processing & drawing glycan sequences, identifying motifs and features, and analyzing them
network
- contains functions for constructing and analyzing glycan networks (e.g., biosynthetic networks)
Below are some examples of what you can do with glycowork
; be sure to
check out the other examples
in the full documentation for everything
that’s there. –> Learn more A non-exhaustive
list includes:
- using trained AI models for prediction –> Learn more
- training your own AI models –> Learn more
- motif enrichment analyses –> Learn more
- differential glycomics expression analysis –> Learn more
- annotating motifs in glycans –> Learn more
- drawing publication-quality glycan figures –> Learn more
- finding out whether & where glycans are describing the same sequence –> Learn more
- m/z to composition to structure to motif mappings –> Learn more
- mass calculation –> Learn more
- visualizing motif distribution / glycan similarities / sequence properties –> Learn more
- constructing and analyzing biosynthetic networks –> Learn more
#drawing publication-quality glycan figures
from glycowork.motif.draw import GlycoDraw
GlycoDraw("Neu5Ac(a2-3)Gal(b1-4)[Fuc(a1-3)]GlcNAc(b1-2)Man(a1-3)[Neu5Gc(a2-6)Gal(b1-4)GlcNAc(b1-2)Man(a1-6)][GlcNAc(b1-4)]Man(b1-4)GlcNAc(b1-4)[Fuc(a1-6)]GlcNAc", highlight_motif = "Neu5Ac(a2-3)Gal(b1-4)[Fuc(a1-3)]GlcNAc")
#get motifs, graph features, and sequence features of a set of glycan sequences to train models or analyze glycan properties
glycans = ["Neu5Ac(a2-3)Gal(b1-4)[Fuc(a1-3)]GlcNAc(b1-2)Man(a1-3)[Gal(b1-3)[Fuc(a1-4)]GlcNAc(b1-2)Man(a1-6)]Man(b1-4)GlcNAc(b1-4)[Fuc(a1-6)]GlcNAc",
"Ma3(Ma6)Mb4GNb4GN;N",
"α-D-Manp-(1→3)[α-D-Manp-(1→6)]-β-D-Manp-(1→4)-β-D-GlcpNAc-(1→4)-β-D-GlcpNAc-(1→",
"F(3)XA2",
"WURCS=2.0/5,11,10/[a2122h-1b_1-5_2*NCC/3=O][a1122h-1b_1-5][a1122h-1a_1-5][a2112h-1b_1-5][a1221m-1a_1-5]/1-1-2-3-1-4-3-1-4-5-5/a4-b1_a6-k1_b4-c1_c3-d1_c6-g1_d2-e1_e4-f1_g2-h1_h4-i1_i2-j1",
"""RES
1b:b-dglc-HEX-1:5
2s:n-acetyl
3b:b-dglc-HEX-1:5
4s:n-acetyl
5b:b-dman-HEX-1:5
6b:a-dman-HEX-1:5
7b:b-dglc-HEX-1:5
8s:n-acetyl
9b:b-dgal-HEX-1:5
10s:sulfate
11s:n-acetyl
12b:a-dman-HEX-1:5
13b:b-dglc-HEX-1:5
14s:n-acetyl
15b:b-dgal-HEX-1:5
16s:n-acetyl
LIN
1:1d(2+1)2n
2:1o(4+1)3d
3:3d(2+1)4n
4:3o(4+1)5d
5:5o(3+1)6d
6:6o(2+1)7d
7:7d(2+1)8n
8:7o(4+1)9d
9:9o(-1+1)10n
10:9d(2+1)11n
11:5o(6+1)12d
12:12o(2+1)13d
13:13d(2+1)14n
14:13o(4+1)15d
15:15d(2+1)16n"""]
from glycowork.motif.annotate import annotate_dataset
out = annotate_dataset(glycans, feature_set = ['known', 'terminal', 'exhaustive'])
Terminal_LewisX | Internal_LewisX | LewisY | SialylLewisX | SulfoSialylLewisX | Terminal_LewisA | Internal_LewisA | LewisB | SialylLewisA | SulfoLewisA | H_type2 | H_type1 | A_antigen | B_antigen | Galili_antigen | GloboH | Gb5 | Gb4 | Gb3 | 3SGb3 | 8DSGb3 | 3SGb4 | 8DSGb4 | 6DSGb4 | 3SGb5 | 8DSGb5 | 6DSGb5 | 6DSGb5_2 | 6SGb3 | 8DSGb3_2 | 6SGb4 | 8DSGb4_2 | 6SGb5 | 8DSGb5_2 | 66DSGb5 | Forssman_antigen | iGb3 | I_antigen | i_antigen | PI_antigen | Chitobiose | Trimannosylcore | Internal_LacNAc_type1 | Terminal_LacNAc_type1 | Internal_LacNAc_type2 | Terminal_LacNAc_type2 | Internal_LacdiNAc_type1 | Terminal_LacdiNAc_type1 | Internal_LacdiNAc_type2 | Terminal_LacdiNAc_type2 | bisectingGlcNAc | VIM | PolyLacNAc | Ganglio_Series | Lacto_Series(LewisC) | NeoLacto_Series | betaGlucan | KeratanSulfate | Hyluronan | Mollu_series | Arthro_series | Cellulose_like | Chondroitin_4S | GPI_anchor | Isoglobo_series | LewisD | Globo_series | Sda | SDA | Muco_series | Heparin | Peptidoglycan | Dermatansulfate | CAD | Lactosylceramide | Lactotriaosylceramide | LexLex | GM3 | H_type3 | GM2 | GM1 | cisGM1 | VIM2 | GD3 | GD1a | GD2 | GD1b | SDLex | Nglycolyl_GM2 | Fuc_LN3 | GT1b | GD1 | GD1a_2 | LcGg4 | GT3 | Disialyl_T_antigen | GT1a | GT2 | GT1c | 2Fuc_GM1 | GQ1c | O_linked_mannose | GT1aa | GQ1b | HNK1 | GQ1ba | O_mannose_Lex | 2Fuc_GD1b | Sialopentaosylceramide | Sulfogangliotetraosylceramide | B-GM1 | GQ1aa | bisSulfo-Lewis x | para-Forssman | core_fucose | core_fucose(a1-3) | GP1c | B-GD1b | GP1ca | Isoglobotetraosylceramide | polySia | high_mannose | Gala_series | LPS_core | Nglycan_complex | Nglycan_complex2 | Oglycan_core1 | Oglycan_core2 | Oglycan_core3 | Oglycan_core4 | Oglycan_core5 | Oglycan_core6 | Oglycan_core7 | Xylogalacturonan | Sialosylparagloboside | LDNF | OFuc | Arabinogalactan_type2 | EGF_repeat | Nglycan_hybrid | Arabinan | Xyloglucan | Acharan_Sulfate | M3FX | M3X | 1-6betaGalactan | Arabinogalactan_type1 | Galactomannan | Tetraantennary_Nglycan | Mucin_elongated_core2 | Fucoidan | Alginate | FG | XX | Difucosylated_core | GalFuc_core | Fuc | Gal | GalNAc | GalNAcOS | GlcNAc | Man | Neu5Ac | Xyl | Fuc(a1-2)Gal | Fuc(a1-3)GlcNAc | Fuc(a1-4)GlcNAc | Fuc(a1-6)GlcNAc | Fuc(a1-?)GlcNAc | Gal(b1-3)GlcNAc | Gal(b1-4)GlcNAc | Gal(b1-?)GlcNAc | GalNAc(b1-4)GlcNAc | GalNAcOS(b1-4)GlcNAc | GlcNAc(b1-2)Man | GlcNAc(b1-4)GlcNAc | GlcNAc(b1-?)Man | Man(a1-3)Man | Man(a1-6)Man | Man(a1-?)Man | Man(b1-4)GlcNAc | Neu5Ac(a2-3)Gal | Xyl(b1-2)Man | Terminal_Neu5Ac(a2-3) | Terminal_Gal(b1-3) | Terminal_Fuc(a1-3) | Terminal_GalNAcOS(b1-4) | Terminal_Man(a1-3) | Terminal_Fuc(a1-4) | Terminal_Xyl(b1-2) | Terminal_GalNAc(b1-4) | Terminal_Fuc(a1-6) | Terminal_Gal(b1-4) | Terminal_Fuc(a1-2) | Terminal_Man(a1-6) | Terminal_Fuc(a1-?) | Terminal_Man(a1-?) | Terminal_GlcNAc(b1-?) | Terminal_Gal(b1-?) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Neu5Ac(a2-3)Gal(b1-4)[Fuc(a1-3)]GlcNAc(b1-2)Man(a1-3)[Gal(b1-3)[Fuc(a1-4)]GlcNAc(b1-2)Man(a1-6)]Man(b1-4)GlcNAc(b1-4)[Fuc(a1-6)]GlcNAc | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 2 | 0 | 0 | 4 | 3 | 1 | 0 | 0 | 1 | 1 | 1 | 3 | 1 | 1 | 2 | 0 | 0 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 0 | 1 |
Man(a1-3)[Man(a1-6)]Man(b1-4)GlcNAc(b1-4)GlcNAc | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 |
Man(a1-3)[Man(a1-6)]Man(b1-4)GlcNAc(b1-4)GlcNAc | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 |
GlcNAc(b1-?)Man(a1-3)[GlcNAc(b1-?)Man(a1-6)][Xyl(b1-2)]Man(b1-4)GlcNAc(b1-4)[Fuc(a1-3)]GlcNAc | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 4 | 3 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 1 | 1 | 2 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 |
Fuc(a1-2)Gal(b1-4)GlcNAc(b1-2)Man(a1-6)[Gal(b1-4)GlcNAc(b1-2)Man(a1-3)]Man(b1-4)GlcNAc(b1-4)[Fuc(a1-6)]GlcNAc | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 4 | 3 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 2 | 2 | 0 | 0 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 2 | 0 | 0 | 1 |
GalNAcOS(b1-4)GlcNAc(b1-2)Man(a1-3)[GalNAc(b1-4)GlcNAc(b1-2)Man(a1-6)]Man(b1-4)GlcNAc(b1-4)GlcNAc | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 4 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
#using graphs, you can easily check whether a glycan contains a specific motif; how about internal Lewis A/X motifs?
from glycowork.motif.graph import subgraph_isomorphism
print(subgraph_isomorphism('Neu5Ac(a2-3)Gal(b1-4)[Fuc(a1-3)]GlcNAc(b1-6)[Gal(b1-3)]GalNAc',
'Fuc(a1-?)[Gal(b1-?)]GlcNAc', termini_list = ['terminal', 'internal', 'flexible']))
print(subgraph_isomorphism('Neu5Ac(a2-3)Gal(b1-3)[Fuc(a1-4)]GlcNAc(b1-6)[Gal(b1-3)]GalNAc',
'Fuc(a1-?)[Gal(b1-?)]GlcNAc', termini_list = ['t', 'i', 'f']))
print(subgraph_isomorphism('Gal(b1-3)[Fuc(a1-4)]GlcNAc(b1-6)[Gal(b1-3)]GalNAc',
'Fuc(a1-?)[Gal(b1-?)]GlcNAc', termini_list = ['t', 'i', 'f']))
#or you could find the terminal epitopes of a glycan
from glycowork.motif.annotate import get_terminal_structures
print("\nTerminal structures:")
print(get_terminal_structures('Man(a1-3)[Man(a1-6)]Man(b1-4)GlcNAc(b1-4)[Fuc(a1-6)]GlcNAc'))
True
True
False
Terminal structures:
['Man(a1-3)', 'Man(a1-6)', 'Fuc(a1-6)']
#given a composition, find matching glycan structures in SugarBase; specific for glycan classes and taxonomy
from glycowork.motif.tokenization import compositions_to_structures
print(compositions_to_structures([{'Hex':3, 'HexNAc':4}], glycan_class = 'N'))
#or we could calculate the mass of this composition
from glycowork.motif.tokenization import composition_to_mass
print("\nMass of the composition Hex3HexNAc4")
print(composition_to_mass({'Hex':3, 'HexNAc':4}))
print(composition_to_mass("H3N4"))
print(composition_to_mass("Hex3HexNAc4"))
0 compositions could not be matched. Run with verbose = True to see which compositions.
glycan abundance
0 GlcNAc(b1-2)Man(a1-3)[GlcNAc(b1-2)Man(a1-6)]Ma... 0
1 GlcNAc(b1-2)Man(a1-3)[GlcNAc(b1-4)][Man(a1-6)]... 0
2 GlcNAc(b1-2)[GlcNAc(b1-4)]Man(a1-3)[Man(a1-6)]... 0
3 GalNAc(b1-4)GlcNAc(b1-2)Man(a1-3)[Man(a1-6)]Ma... 0
4 GlcNAc(b1-2)Man(a1-6)[Man(a1-3)][GlcNAc(b1-4)]... 0
5 Man(a1-3)[GlcNAc(b1-2)Man(a1-6)][GlcNAc(b1-4)]... 0
6 GlcNAc(?1-?)Man(a1-3)[GlcNAc(b1-?)Man(a1-6)]Ma... 0
7 GlcNAc(b1-2)Man(a1-3)[GlcNAc(b1-6)Man(a1-6)]Ma... 0
8 GlcNAc(b1-4)Man(a1-3)[GlcNAc(b1-6)Man(a1-6)]Ma... 0
9 GlcNAc(b1-2)Man(a1-3)[GlcNAc(b1-2)Man(a1-6)][G... 0
10 GlcNAc(b1-2)Man(a1-3)[GlcNAc(b1-2)[GlcNAc(b1-4... 0
11 GlcNAc(b1-2)[GlcNAc(b1-4)]Man(a1-3)[GlcNAc(b1-... 0
12 GlcNAc(b1-4)Man(a1-3)[GlcNAc(b1-2)Man(a1-6)]Ma... 0
13 Man(a1-3)[GlcNAc(b1-2)[GlcNAc(b1-6)]Man(a1-6)]... 0
14 GalNAc(b1-4)GlcNAc(b1-2)Man(a1-6)[Man(a1-3)]Ma... 0
Mass of the composition Hex3HexNAc4
1316.4865545999999
1316.4865545999999
1316.4865545999999
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file glycowork-1.4.0.tar.gz
.
File metadata
- Download URL: glycowork-1.4.0.tar.gz
- Upload date:
- Size: 6.9 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ea5ac3f9ef204b3db49ba945433903458954ac16bbb27edee6059d5b73f06bb2 |
|
MD5 | 50de25bb22f57483c96b388184fa7cb0 |
|
BLAKE2b-256 | f4b74395d7d32ba4b1eab83943f93a02acf61a21ca5711001c5607ea64a6c778 |
File details
Details for the file glycowork-1.4.0-py3-none-any.whl
.
File metadata
- Download URL: glycowork-1.4.0-py3-none-any.whl
- Upload date:
- Size: 7.1 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 861aaacc94468964d6b284c488fec03d993e25c892f42b5522e0098e42bffe73 |
|
MD5 | 88f24eed9bf2841ee76c2124fd8cee1e |
|
BLAKE2b-256 | 6af63321eb0cec72072552eeb66359afabe53aba8579e7ed2af381ef3be159a7 |