Skip to main content

掘金量化 掘金3 sdk

Project description

掘金量化

A股实盘量化 中国期货量化 程序化交易 仿真 中国量化第一 掘金3 sdk

Changelog

Version v3.0.171

  • fix: 退订后再次订阅数据context.data数据异常
  • fix: 同时存在waitgroup=true和waitgroup=false的订阅时触发on_bar会导致程序崩溃

Version v3.0.170

  • fix: 订阅多标的、多频率情况下出现context.data缓存异常

Version v3.0.169

  • fix: 当历史bar数量少于订阅行情时设置的订阅数据滑窗大小时,context.data会出现重复数据。
  • feat: 增加账号连接状态枚举值
  • feat: 增加wheel依赖,避免新python环境安装出错
  • other: 升级capi到3.7.8。
    • fix: 修正回测下单时交易事件错误时序问题
    • fix: 回测时委托回报添加待报和已报状态

Version v3.0.168

  • fix: option_calculate_ivsurface 接口调用出错
  • refactor: 优化对接实时行情服务的兼容性
  • feat: 支持pandas2numpy2

Version 3.0.167

  • feat: 支持多源行情
  • feat: 支持ctp行情直连, 可通过set_option接口设置ctp_md_info参数来配置ctp行情连接信息
  • feat: 行情连接、断开回调触发时可通过 context.message 来获取描述信息
  • feat: 回测模式下在策略代码中提前订阅行情再调用current,会根据订阅频度(tick,分钟bar,日线)取回测当前时刻的最新价格返回,超出历史行情权限会报错中止回测;不订阅current会取回测当前时刻最近的日线收盘价返回

Version 3.0.166

  • fix: current 没有返回"0"值字段
  • fix: get_instruments、get_history_instruments 查询参数fields包含 is_adjusted 时,is_adjusted字段没有返回
  • feat: 新增期货每日成交持仓排名接口(多标的多指标)

Version 3.0.165

  • fix: 单独订阅 3600s 与 同时订阅 tick 和 3600s 所产生的 3600s 数据 open 和 high 不一致
  • fix: context.data在回测模式下盘中可以取到当天的日线数据(未来数据)
  • feat: 支持Python 3.12

Version 3.0.164

  • 修复 context.data 函数bug
  • 移除 arrow 库依赖, 改为使用 Python 原生日期库

Version 3.0.163

  • context.data 优化, 增加两种新的返回类型
  • 新增龙虎榜和北向资金接口
  • 增加 get_cash 和 get_position 接口

Version 3.0.162

  • 添加新的回调函数, on_customized_message - 定制消息推送事件
  • 修改回测时间错误提示文案
  • 日内回测行情提取逻辑调整, 匹配单次33000条记录限制
  • 修正回测内存过大问题
  • 优化 history 和 history_n 速度
  • 增加 tzdata 依赖, 解决 tick 和 bar 转换为 pandas DataFrame 时过慢问题

Version 3.0.161

  • current 函数添加 include_call_auction 入参

Version 3.0.160

  • SDK 支持 Python 3.11 版本
  • 对不常用到的依赖库设置为可选依赖项, 现在默认移除 scipy 库的依赖, 要下载所有依赖可使用 pip install gm[all] 命令
  • Pandas 的默认精度改为8位小数
  • 修复 tick 回测模式 created_at 字段毫秒数错误问题
  • 添加新枚举值, 委托类型 OrderType 相关

Version 3.0.159

  • 修复context.data报错问题

Version 3.0.158

  • 修复context.data取日线数据少了最近一天的问题
  • 修复回测模式下,订阅用了wait_group=True,导致定时任务处理时间不对问题
  • Tick增加iopv字段
  • 交易所增加广期所

Version 3.0.157

  • 修正 Order 对象被错误过滤掉 order_business 和 position_src 字段的问题

Version 3.0.156

  • 新增做市API
  • 新增10个财务接口
  • 修复get_history_instruments接口conversion_price字段取数错误问题
  • get_symbols增加股转作市业务相关字段
  • 修正回测错误时,返回错误码与扩展信息不一致问题
  • 增加枚举常量 OrderBusiness_MARKET_MAKING

Version 3.0.155

  • 两融API改造, 补全头寸来源 position_src, 负债合约编号 debtsno 和还款方式 repay_type 三个字段
  • 修复 context.data 获取日线bar时有重复数据的bug
  • current 接口支持 field 过滤
  • 修复 stk_get_index_constituents 接口返回值 weight 为 0 bug
  • Python3.9 的 pandas 库 1.5 版本有bug, 在转带时区的datetime数据时非常慢, 限制 pandas 库的最高版本号避免

Version 3.0.154

  • 修正用广发端时AccountStatus事件中account_name缺失问题
  • 修正AccountStatus状态为6问题
  • SDK 报错提示错误信息文案优化
  • 支持分布式部署, Linux SDK 现在可以连上终端
  • 修复投研数据查询接口返回值时间格式问题
  • 指数成分查询函数stk_get_index_constituents增加总市值和流通市值字段
  • 优化回测时 on_tick 和 on_bar 的性能瓶颈
  • 修复行情连接断开又连上后,订阅行情成功策略却退出问题
  • context.account().status 的类型改为 dict 类型

Version 3.0.153

  • 修复 SDK Python 3.10 版本的第三方依赖库兼容性问题

Version 3.0.152

  • 修复部分老接口日期格式兼容问题
  • 修复 grpc 网络错误问题
  • 限制第三方库最高版本以保证兼容性

Versino 3.0.151

  • 修正使用数据代理时还在读取sdk缓存问题
  • 优化 SDK 依赖项, 保证 SDK 安装兼容性

Version 3.0.150

  • 本地数据代理优化
  • SDK 报错机制改造
  • 新增接口 set_option - 设置策略运行系统选项, 目前支持设置回测运行的最大线程数和触发流控时最大等待时间
  • 优化回测时的超时机制,避免部分回测业务不正常
  • 添加枚举量, 新的委托拒绝原因
  • 接口变更, 查询指数成分股接口新增 trade_date 参数
  • 修复 AccountStatus 查询与推送系列问题
  • 回测模式下载数据时打印相关指引信息

Version 3.0.149

  • 新增广发期权组合保证金API

Version 3.0.148

  • 新增财务数据接口
  • 修复已知 bug

Version 3.0.147

  • 修复启动速度过慢的问题
  • 修复调用 get_history_symbols 接口时进程崩溃退出问题

Version 3.0.146

  • 修复 get_symbols 和 get_history_symbols 接口 bug
  • Tick 类型添加 ask_q, bid_q 字段

Version 3.0.145

  • 新增投研数据查询接口
  • 修复 ipo_get_match_number 和 ipo_get_lot_info 函数日期参数传输错误 bug
  • 修复 get_history_instruments 函数返回值不存在 info 字段时产生的 Bug
  • 修复用 in 判断 BarLikeDict2 对象时无法退出的 bug

Version 3.0.144

  • 修复 get_history_instruments 返回错误的调整标志的 Bug

Version 3.0.143

  • 增加接口 bond_convertible_get_call_info - 查询可转债赎回信息

Version 3.0.142

  • context.data 获取 tick 时返回格式修正为 DataFrame
  • get_history_instrument 增加可转债字段
  • 支持 Python3.10, 弃用 Python2.7

Version 3.0.141

  • 限制 protobuf 版本小于 4.0 防止不兼容情况
  • 修复 get_history_instruments 里获取的保证金比例 margin_ratio 获取的是最新数据而不是历史数据的问题

Version 3.0.140

  • 算法单新增 algo_params 字段
  • 兼容老版本客户端传入错误的默认参数 undefined 的情况
  • 实时模式能正确返回错误信息
  • instrument 添加 conversion_price 字段

Version 3.0.139

  • 修复 Python 3.7.1 版本 typing_extensions 依赖问题, typing_extensions 版本需要大于等于 4.1.1
  • 增加 get_expire_rest_days 查询到期剩余天数
  • 修改 option_covered_open 备兑开仓, 在回测/仿真模式下不占用保证金
  • 修改 option_covered_close 备兑平仓, 在回测/仿真模式下不释放保证金
  • 新增 option_preorder_valid_volume 备兑标志, 可获取备兑可开数量
  • run 函数新增 backtest_match_mode 参数, 设置回测撮合模式, 可设定市价单是否采用当前 bar/tick 撮合成交

Version 3.0.138

  • 策略进程退出前, SDK主动退订已订阅代码, 恢复订阅权限
  • 修复回测模式中在 on_bar 或 on_tick 里下单后资金和持仓没有变化的问题
  • 兼容 Pandas 1.4.0 以上版本
  • option_get_symbols_by_exchange 增加参数 adjust_flag
  • 修复 get_history_instruments 返回的 multiplier 和 exercise_price 字段只取最新数据问题
  • 之前对所有的浮点数四舍五入改为仅对价格类的字段四舍五入4位小数
  • run 添加参数 backtest_commission_unit, 表示回测手续费需要按张收取
  • option_get_symbols_by_in_at_out 添加参数 adjust_flag 来决定选择的合约范围是否包含调整过的合约
  • 修复 get_instruments 的 exchanges 不支持list格式问题
  • 增加针对剩余时间t=0导致分母为0的健壮性处理, 定价模型计算时剩余时间最小值设置为 0.01

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

gm-3.0.171-cp312-cp312-win_amd64.whl (5.4 MB view details)

Uploaded CPython 3.12 Windows x86-64

gm-3.0.171-cp312-cp312-manylinux1_x86_64.whl (11.5 MB view details)

Uploaded CPython 3.12

gm-3.0.171-cp311-cp311-win_amd64.whl (5.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

gm-3.0.171-cp311-cp311-win32.whl (4.5 MB view details)

Uploaded CPython 3.11 Windows x86

gm-3.0.171-cp311-cp311-manylinux1_x86_64.whl (11.2 MB view details)

Uploaded CPython 3.11

gm-3.0.171-cp310-cp310-win_amd64.whl (5.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

gm-3.0.171-cp310-cp310-win32.whl (4.5 MB view details)

Uploaded CPython 3.10 Windows x86

gm-3.0.171-cp310-cp310-manylinux1_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.10

gm-3.0.171-cp39-cp39-win_amd64.whl (5.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

gm-3.0.171-cp39-cp39-win32.whl (4.5 MB view details)

Uploaded CPython 3.9 Windows x86

gm-3.0.171-cp39-cp39-manylinux1_x86_64.whl (10.7 MB view details)

Uploaded CPython 3.9

gm-3.0.171-cp38-cp38-win_amd64.whl (5.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

gm-3.0.171-cp38-cp38-win32.whl (4.5 MB view details)

Uploaded CPython 3.8 Windows x86

gm-3.0.171-cp38-cp38-manylinux1_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.8

gm-3.0.171-cp37-cp37m-win_amd64.whl (5.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

gm-3.0.171-cp37-cp37m-win32.whl (4.5 MB view details)

Uploaded CPython 3.7m Windows x86

gm-3.0.171-cp37-cp37m-manylinux1_x86_64.whl (10.5 MB view details)

Uploaded CPython 3.7m

gm-3.0.171-cp36-cp36m-win_amd64.whl (5.4 MB view details)

Uploaded CPython 3.6m Windows x86-64

gm-3.0.171-cp36-cp36m-win32.whl (4.5 MB view details)

Uploaded CPython 3.6m Windows x86

gm-3.0.171-cp36-cp36m-manylinux1_x86_64.whl (10.5 MB view details)

Uploaded CPython 3.6m

File details

Details for the file gm-3.0.171-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: gm-3.0.171-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 5.4 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.10

File hashes

Hashes for gm-3.0.171-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 c4dddae42fe833045bbf38d6385ce38bb0e615944c33aa762e5f94635183e55e
MD5 4ba9fe51917b235a46b44a90da371350
BLAKE2b-256 9749a0ca6eedd087f97bd196bbbd161c298cc188b48fecf9ea62fa89d22de615

See more details on using hashes here.

File details

Details for the file gm-3.0.171-cp312-cp312-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for gm-3.0.171-cp312-cp312-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ce8d8a1b41dc4a3641f4efc2258a26f54b3a59048ed9dd14c75265ef2eb53ece
MD5 f797e35b2607ccb6e8c1b309a9ba0b4c
BLAKE2b-256 55cb7ca3c2bfbca495eb9d48b4cdc499ba0f9327195304f145174c89df2577d2

See more details on using hashes here.

File details

Details for the file gm-3.0.171-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: gm-3.0.171-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 5.4 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.10

File hashes

Hashes for gm-3.0.171-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 10ac0bae2db28f64e91a153364ec36a921894032b3ba66fa00d64a6aff87e51a
MD5 a0ffffe837da4ed08a3745e49a6c206b
BLAKE2b-256 1dea54eb47726a984e7e5e1846a838b1ba10a70c69ce507ea08bc3971ce8b532

See more details on using hashes here.

File details

Details for the file gm-3.0.171-cp311-cp311-win32.whl.

File metadata

  • Download URL: gm-3.0.171-cp311-cp311-win32.whl
  • Upload date:
  • Size: 4.5 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.10

File hashes

Hashes for gm-3.0.171-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 69a4229c85c0e8e2f4f5a6469dc08c84c1e2a7540ddca93b3250662132f1c441
MD5 a91d02516f3590ba7b4274b2136eb592
BLAKE2b-256 99da4c772272e98a8a5c5b30a6a513ef67cf544a3ca6a2ed1a43c1d3a2fbbc44

See more details on using hashes here.

File details

Details for the file gm-3.0.171-cp311-cp311-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for gm-3.0.171-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0d6545e5eb1a015c8f37dffd8b8f8530ec419d876a01312e745e40cba5f8c4ed
MD5 bdc977ae7d1cf5f49a686d8754df77e4
BLAKE2b-256 9ea05cf604266d75a10793384cf2389cc10c50b3a7acc79fd6fe1751177786ad

See more details on using hashes here.

File details

Details for the file gm-3.0.171-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: gm-3.0.171-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 5.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.10

File hashes

Hashes for gm-3.0.171-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 30385ffe7d4c8fb5c1dd6032c6a7a65888e441ed26323a6ea54fe0af607e7737
MD5 bab4f7091292772f9c077d0ce73bcd7e
BLAKE2b-256 d618fbe3391d0eeb037b657cf6e78f2b41bcf0be30036a4337af74e4d59fe24a

See more details on using hashes here.

File details

Details for the file gm-3.0.171-cp310-cp310-win32.whl.

File metadata

  • Download URL: gm-3.0.171-cp310-cp310-win32.whl
  • Upload date:
  • Size: 4.5 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.10

File hashes

Hashes for gm-3.0.171-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 8c7a736c6cbb036e0e6d91ab8d1cc6e0d7c00368ae7184642639eddc91807b17
MD5 e80c0f057f31c9b46ee45bc151c11221
BLAKE2b-256 cd37c829034fbf9f2e2294095f5d2f72215e3b2776974e8bb8cd9ad8517bd3f2

See more details on using hashes here.

File details

Details for the file gm-3.0.171-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for gm-3.0.171-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d35bf0de4b0ce9b3ec2f4a4aa92409d953685197fcdafe50f11b9cd709cfa5b8
MD5 cb581b5bbc4867a04884ddfb2132d95b
BLAKE2b-256 e867a27315cc974180d4843eec74a76ecc655cfa3a06de9fbf23faf10b25ce2a

See more details on using hashes here.

File details

Details for the file gm-3.0.171-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: gm-3.0.171-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 5.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.10

File hashes

Hashes for gm-3.0.171-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8f5913b0f5069680554bdac7d7af4fc8c246a23770a9f9a1641ec7d60bbb31eb
MD5 a33e81a16271159d1ccc0ffbbb483d7e
BLAKE2b-256 dfb4ff658ed7108c7e1f51c7b51675defb07e6b2d7f3dd215653783faa6da9ed

See more details on using hashes here.

File details

Details for the file gm-3.0.171-cp39-cp39-win32.whl.

File metadata

  • Download URL: gm-3.0.171-cp39-cp39-win32.whl
  • Upload date:
  • Size: 4.5 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.10

File hashes

Hashes for gm-3.0.171-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 48114695a51e39c6d08f6204c68fa0e56bb0dae6305815ded74e9c4036e89358
MD5 fcdca1ad08653fd12f99cc715a801aae
BLAKE2b-256 1b07d573da32c7cd97eeb7e2084917212a397a8803bb1c0008514c827517800c

See more details on using hashes here.

File details

Details for the file gm-3.0.171-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for gm-3.0.171-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 43eafb97e92bb42a16faef33e86b3c321372609a8490e03111d0e42e7464d3ba
MD5 629f581ed547688c1bfb54e99d146b10
BLAKE2b-256 834ecef39b30bae8a1fc52f07711540040d4379815893d5ccef7e1a7d14e5d0c

See more details on using hashes here.

File details

Details for the file gm-3.0.171-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: gm-3.0.171-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 5.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.10

File hashes

Hashes for gm-3.0.171-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2b609d80149284b154006a1c32c8ea0167d3a2a3343d845944c6e3681f302bc2
MD5 d4f6d1f89b5bf10304c3e76d81aed92e
BLAKE2b-256 b1cd6c4e25c4faf92c4b5721babe931f263555b823b44971dd789b5bef17aa7c

See more details on using hashes here.

File details

Details for the file gm-3.0.171-cp38-cp38-win32.whl.

File metadata

  • Download URL: gm-3.0.171-cp38-cp38-win32.whl
  • Upload date:
  • Size: 4.5 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.10

File hashes

Hashes for gm-3.0.171-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 82d4460b59e643c05dd0ecf648d6ab04f060db0e1a51d432af872491db55e2c6
MD5 db6cf5514e62d61bff634cee3a3438e1
BLAKE2b-256 68b41c65c08df68abaa94271a172257ea00ebc34ae969452aeacd5338ae46432

See more details on using hashes here.

File details

Details for the file gm-3.0.171-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for gm-3.0.171-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9ef1ffa14315fb8e839f910e753b7d242909b906ad9f7d5ac7ad7a62c1852684
MD5 36a87a8013d10ba5fd8b31bb83a83da6
BLAKE2b-256 01739a08f632135011518e7156c96ac24b79ffcacf5a217afdba5461070acf39

See more details on using hashes here.

File details

Details for the file gm-3.0.171-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: gm-3.0.171-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 5.4 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.10

File hashes

Hashes for gm-3.0.171-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 cf4f3abedae3652e7da04695a74265133fa3216f394b6238c3812216d3f3eb29
MD5 2b3a1616c11a79feb39984120e4ad474
BLAKE2b-256 31e9cd6c10078e4f234fcfa2b9b0a764eab800d2be3b0cdc5142286118c2dcba

See more details on using hashes here.

File details

Details for the file gm-3.0.171-cp37-cp37m-win32.whl.

File metadata

  • Download URL: gm-3.0.171-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 4.5 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.10

File hashes

Hashes for gm-3.0.171-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 399958effe2b757e37d62f902d18223023388762c2973def725b9535daf5b92a
MD5 3101256077648624c3e44dc48b0db0f1
BLAKE2b-256 6dc9e9e46a49aa06c3d28942369804845bd1e751a9d7b839c5b6840338c62991

See more details on using hashes here.

File details

Details for the file gm-3.0.171-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for gm-3.0.171-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 27ddd2ce1c3042c3665bf64af309e03d5275eb5d125ccbd754d4a501794e956f
MD5 ace89952db46e7e17e7992ab8934af75
BLAKE2b-256 d34457f511ad07eb4124f139706160422090037e88be29967ba5eec945133be4

See more details on using hashes here.

File details

Details for the file gm-3.0.171-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: gm-3.0.171-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 5.4 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.10

File hashes

Hashes for gm-3.0.171-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 0b0bfafbb3aa8168f3cd03276478653a09ba3331b91a374c5ed3d7ab89e53663
MD5 5e6282be2835c7542d6e809476f3655f
BLAKE2b-256 83b3ea00caaae8225e7cea428a495592467bad6c88dbb7b2f1a02978bb8839e2

See more details on using hashes here.

File details

Details for the file gm-3.0.171-cp36-cp36m-win32.whl.

File metadata

  • Download URL: gm-3.0.171-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 4.5 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.10

File hashes

Hashes for gm-3.0.171-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 4c09cfb4b0371c5f9d4674f31aea0f1be2e605fb20c623283db721b57d337916
MD5 c2ee02fa25a8dc0b78778bd5c1519c7f
BLAKE2b-256 1847ff1cc6df1c878668d4dbf624cb8bdf1f16bd56ebf6e711d003c7f7bd3779

See more details on using hashes here.

File details

Details for the file gm-3.0.171-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for gm-3.0.171-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c352c6f78f17743efd310855d86735d501af04e9df933434fd4e0e0b646dc042
MD5 a98eb077938278bb2dbd42c71a66bbd8
BLAKE2b-256 476347e8e3d96e49ed40203c02946119c45b71b3b442f328a45dbe07a7d3a5d6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page