Skip to main content

Generative Manifold Networks

Project description

Generative Manifold Networks (GMN)


Generative Manifold Networks is a generalization of nonlinear dynamical systems from a single state-space with a manifold operator, to an interconnected network of operators on the state-space(s) introduced by Pao et al.

GMN is developed at the Biological Nonlinear Dynamics Data Science Unit, OIST


Installation

Python Package Index (PyPI) gmn.

pip install gmn


Documentation

GMN documentation.


Usage

Example usage at the python prompt in directory gmn:

>>> import gmn
>>> G = gmn.GMN( configFile = './config/default.cfg' )
>>> G.Generate()
>>> G.DataOut.tail()
     Time             A         B       C         D       Out
295   996 -2.487000e-01  0.927389 -0.5018  0.383759 -0.902106
296   997 -1.874000e-01  0.973968 -0.4708  0.471114 -0.961839
297   998 -1.253000e-01  0.989932 -0.4248  0.540129 -0.989022
298   999 -6.280002e-02  0.984369 -0.3671  0.591274 -0.986631
299  1000 -2.438686e-08  0.957464 -0.3016  0.624011 -0.951023

References

Experimentally testable whole brain manifolds that recapitulate behavior

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gmn-1.1.0.tar.gz (26.6 kB view details)

Uploaded Source

Built Distribution

gmn-1.1.0-py3-none-any.whl (17.2 kB view details)

Uploaded Python 3

File details

Details for the file gmn-1.1.0.tar.gz.

File metadata

  • Download URL: gmn-1.1.0.tar.gz
  • Upload date:
  • Size: 26.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/50.3.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.10

File hashes

Hashes for gmn-1.1.0.tar.gz
Algorithm Hash digest
SHA256 221d488e7bccc1d5bfeffc2b95c813bedc9075e92748c1767f39e4fd716600b1
MD5 02af1f276d1174bdc34cb2e719d0dd3f
BLAKE2b-256 29633ce640220593a5e353e53249b8a3edc78efdf850e98897717ba00d387651

See more details on using hashes here.

File details

Details for the file gmn-1.1.0-py3-none-any.whl.

File metadata

  • Download URL: gmn-1.1.0-py3-none-any.whl
  • Upload date:
  • Size: 17.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/50.3.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.10

File hashes

Hashes for gmn-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 4172ac9cc1bcfe21f37c1a0d78be938260b8d4096a8047f0e592cb5f77d2f6aa
MD5 e1e30c3c8c1b871578cb980b099339ba
BLAKE2b-256 d2aa8a59a58c70d98680fe31ce3f6c30a4886e93b0767fa5d592e092d2b4badb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page