Project description
Generative Manifold Networks (GMN)
Generative Manifold Networks is a generalization of nonlinear dynamical systems from a single state-space with a manifold operator, to an interconnected network of operators on the state-space(s) introduced by Pao et al.
GMN is developed at the Biological Nonlinear Dynamics Data Science Unit, OIST
Installation
Python Package Index (PyPI) gmn .
pip install gmn
Documentation
GMN documentation .
Usage
Example usage at the python prompt in directory gmn
:
>>> import gmn
>>> G = gmn . GMN ( configFile = './config/default.cfg' )
>>> G . Generate ()
>>> G . DataOut . tail ()
Time A B C D Out
295 996 - 2.487000e-01 0.927389 - 0.5018 0.383759 - 0.902106
296 997 - 1.874000e-01 0.973968 - 0.4708 0.471114 - 0.961839
297 998 - 1.253000e-01 0.989932 - 0.4248 0.540129 - 0.989022
298 999 - 6.280002e-02 0.984369 - 0.3671 0.591274 - 0.986631
299 1000 - 2.438686e-08 0.957464 - 0.3016 0.624011 - 0.951023
References
Experimentally testable whole brain manifolds that recapitulate behavior
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages .
Source Distribution
Built Distribution
File details
Details for the file gmn-1.2.2.tar.gz
.
File metadata
Download URL:
gmn-1.2.2.tar.gz
Upload date: Apr 9, 2023
Size: 32.7 kB
Tags: Source
Uploaded using Trusted Publishing? No
Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/50.3.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.10
File hashes
Hashes for gmn-1.2.2.tar.gz
Algorithm
Hash digest
SHA256
db09ad13b7f4c8fef15b86b023dcc4ae6e1b7baa099d4c82b3a8a361895f2713
Copy
MD5
38ad94555e9f0a4e730deead6ecbf5bd
Copy
BLAKE2b-256
1da1a9aa14c53a2d534af3dd96904e3acce7a75e1c38a7d74eb9ab416a33100c
Copy
See more details on using hashes here.
File details
Details for the file gmn-1.2.2-py3-none-any.whl
.
File metadata
Download URL:
gmn-1.2.2-py3-none-any.whl
Upload date: Apr 9, 2023
Size: 19.8 kB
Tags: Python 3
Uploaded using Trusted Publishing? No
Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/50.3.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.10
File hashes
Hashes for gmn-1.2.2-py3-none-any.whl
Algorithm
Hash digest
SHA256
d5aeb2d9695073d1316fc73d630d08bf54220777677cb7f75dcbbb6281a053b6
Copy
MD5
54295b0d37b7bef25878092a5400bfbc
Copy
BLAKE2b-256
44ee2d0adab5d126ee1e618ce65d6729f0fe943a0d6d2138417b7ca6d3f2e700
Copy
See more details on using hashes here.