Skip to main content

Gaussian Mixture Regression

Project description

Gaussian Mixture Models (GMMs) for clustering and regression in Python.

Travis DOI (JOSS) DOI (Zenodo) https://raw.githubusercontent.com/AlexanderFabisch/gmr/master/gmr.png

(Source code of example)

Documentation

Installation

Install from PyPI:

pip install gmr

If you want to be able to run all examples, pip can install all necessary examples with

pip install gmr[all]

You can also install gmr from source:

python setup.py install
# alternatively: pip install -e .

Example

Estimate GMM from samples, sample from GMM, and make predictions:

import numpy as np
from gmr import GMM

# Your dataset as a NumPy array of shape (n_samples, n_features):
X = np.random.randn(100, 2)

gmm = GMM(n_components=3, random_state=0)
gmm.from_samples(X)

# Estimate GMM with expectation maximization:
X_sampled = gmm.sample(100)

# Make predictions with known values for the first feature:
x1 = np.random.randn(20, 1)
x1_index = [0]
x2_predicted_mean = gmm.predict(x1_index, x1)

For more details, see:

help(gmr)

or have a look at the API documentation.

How Does It Compare to scikit-learn?

There is an implementation of Gaussian Mixture Models for clustering in scikit-learn as well. Regression could not be easily integrated in the interface of sklearn. That is the reason why I put the code in a separate repository. It is possible to initialize GMR from sklearn though:

from sklearn.mixture import GaussianMixture
from gmr import GMM
gmm_sklearn = GaussianMixture(n_components=3, covariance_type="diag")
gmm_sklearn.fit(X)
gmm = GMM(
    n_components=3, priors=gmm_sklearn.weights_, means=gmm_sklearn.means_,
    covariances=np.array([np.diag(c) for c in gmm_sklearn.covariances_]))

For model selection with sklearn we furthermore provide an optional regressor interface.

Saving a Model

This library does not directly offer a function to store fitted models. Since the implementation is pure Python, it is possible, however, to use standard Python tools to store Python objects. For example, you can use pickle to temporarily store a GMM:

import numpy as np
import pickle
import gmr
gmm = gmr.GMM(n_components=2)
gmm.from_samples(X=np.random.randn(1000, 3))

# Save object gmm to file 'file'
pickle.dump(gmm, open("file", "wb"))
# Load object from file 'file'
gmm2 = pickle.load(open("file", "rb"))

It might be required to store models more permanently than in a pickle file, which might break with a change of the library or with the Python version. In this case you can choose a storage format that you like and store the attributes gmm.priors, gmm.means, and gmm.covariances. These can be used in the constructor of the GMM class to recreate the object and they can also be used in other libraries that provide a GMM implementation. The MVN class only needs the attributes mean and covariance to define the model.

API Documentation

API documentation is available here.

Citation

If you use the library gmr in a scientific publication, I would appreciate citation of the following paper:

Fabisch, A., (2021). gmr: Gaussian Mixture Regression. Journal of Open Source Software, 6(62), 3054, https://doi.org/10.21105/joss.03054

Bibtex entry:

@article{Fabisch2021,
doi = {10.21105/joss.03054},
url = {https://doi.org/10.21105/joss.03054},
year = {2021},
publisher = {The Open Journal},
volume = {6},
number = {62},
pages = {3054},
author = {Alexander Fabisch},
title = {gmr: Gaussian Mixture Regression},
journal = {Journal of Open Source Software}
}

Contributing

How can I contribute?

If you discover bugs, have feature requests, or want to improve the documentation, you can open an issue at the issue tracker of the project.

If you want to contribute code, please open a pull request via GitHub by forking the project, committing changes to your fork, and then opening a pull request from your forked branch to the main branch of gmr.

Development Environment

I would recommend to install gmr from source in editable mode with pip and install all dependencies:

pip install -e .[all,test,doc]

You can now run tests with

nosetests –with-coverage

The option –with-coverage will print a coverage report and output an HTML overview to the folder cover/.

Generate Documentation

The API documentation is generated with pdoc3. If you want to regenerate it, you can run

pdoc gmr --html --skip-errors

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gmr-1.6.2.tar.gz (249.7 kB view details)

Uploaded Source

File details

Details for the file gmr-1.6.2.tar.gz.

File metadata

  • Download URL: gmr-1.6.2.tar.gz
  • Upload date:
  • Size: 249.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.56.2 CPython/3.8.8

File hashes

Hashes for gmr-1.6.2.tar.gz
Algorithm Hash digest
SHA256 953e3f350ac94557612a1832cba0c319389d4f857fe0cf8cd51a1706c3935e6d
MD5 1141ff9f3195ef6288b10134fe8d0d5b
BLAKE2b-256 db30083d51329bc78d83b14c746e1d58dac80791baa9954cf523fccfa88e29a3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page