Skip to main content

Features Based Conformational Clustering of Molecular Dynamics trajectories.

Project description

https://travis-ci.org/rjdkmr/gmx_clusterByFeatures.svg?branch=master Documentation Status

gmx_clusterByFeatures

It can be used to cluster the conformations of a molecule in a molecular dynamics trajectory using collection of features. The features could be any quantity as a function of time such as Projections of eigenvector from PCA or dihedral-PCA, distances, angles, channel radius etc.

See details at: gmx_clusterByFeatures homepage

Installation on Linux and MacOS

sudo pip3 install gmx-clusterByFeatures

No dependency on GROMACS. Install and use it.

For more details, visit download and installation section.

Usage

List of sub-commands available in gmx_clusterByFeatures

Command

Function

cluster

Main module to perform clustering

featuresplot

Feature vs Feature plot to check quality of clustering

distmat

Distance-matrix related calculations

matplot

To visulaize/plot matrix obtained from distmat

hole

To calculate cavity/channel radius using HOLE program

holeplot

To calculate average and plot hole output radius file

holefeatures

To write radius as a features for clustering

holeclustersplot

To plot or write radius for clusters separately

For more details, visit usage section.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

gmx_clusterByFeatures-0.1.17-cp37-cp37m-macosx_10_14_x86_64.whl (10.5 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

gmx_clusterByFeatures-0.1.17-cp37-cp37m-macosx_10_13_x86_64.whl (10.5 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

gmx_clusterByFeatures-0.1.17-cp37-cp37m-macosx_10_12_x86_64.whl (10.6 MB view details)

Uploaded CPython 3.7m macOS 10.12+ x86-64

gmx_clusterByFeatures-0.1.17-cp36-cp36m-macosx_10_14_x86_64.whl (10.5 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

gmx_clusterByFeatures-0.1.17-cp36-cp36m-macosx_10_13_x86_64.whl (10.5 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

gmx_clusterByFeatures-0.1.17-cp36-cp36m-macosx_10_12_x86_64.whl (10.6 MB view details)

Uploaded CPython 3.6m macOS 10.12+ x86-64

gmx_clusterByFeatures-0.1.17-cp35-cp35m-macosx_10_14_x86_64.whl (10.5 MB view details)

Uploaded CPython 3.5m macOS 10.14+ x86-64

gmx_clusterByFeatures-0.1.17-cp35-cp35m-macosx_10_13_x86_64.whl (10.5 MB view details)

Uploaded CPython 3.5m macOS 10.13+ x86-64

gmx_clusterByFeatures-0.1.17-cp35-cp35m-macosx_10_12_x86_64.whl (10.6 MB view details)

Uploaded CPython 3.5m macOS 10.12+ x86-64

File details

Details for the file gmx_clusterByFeatures-0.1.17-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for gmx_clusterByFeatures-0.1.17-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 82391b056cddecfa87d0869a1311ea277b029519a099d783d1af6d6715d04f60
MD5 f2268364dae5865134a906ceb9145ac1
BLAKE2b-256 9fe0bf82457cae474f9a92d51d59ee2d78777aa3d7892e9ec11889f35a22cd30

See more details on using hashes here.

File details

Details for the file gmx_clusterByFeatures-0.1.17-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for gmx_clusterByFeatures-0.1.17-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1f65f5bb0e914cb64ee261ac782af887d953d930d83b050d2269abb11d5afee8
MD5 61b34285969baaf452a685b4070b01b7
BLAKE2b-256 2b0c32e9ec1f77b5f895547aa11107c733c4018f0ec15dae34c23fb9c266ba9d

See more details on using hashes here.

File details

Details for the file gmx_clusterByFeatures-0.1.17-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for gmx_clusterByFeatures-0.1.17-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 b9011b7a07525cb56602046ad72b171cf4c1013922261c70e44fdadf4d35ef04
MD5 050a19b9cd516c53ec31b3f9e7465d7f
BLAKE2b-256 172737cb0d196532673e9fd2594b6f895270b8016a583ddb8466b4533e3cc56c

See more details on using hashes here.

File details

Details for the file gmx_clusterByFeatures-0.1.17-cp37-cp37m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for gmx_clusterByFeatures-0.1.17-cp37-cp37m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 d1bf6a83b820008e2a04cef92658efbf21705fc68cf8009cee35bdd69c6fb98d
MD5 dda90648878ddf78bcd7a625b7fd868b
BLAKE2b-256 2504f4dabe4cd4d2e5f98506277dc32e60a8398b26800fc682feb6dbdcc3d0c1

See more details on using hashes here.

File details

Details for the file gmx_clusterByFeatures-0.1.17-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for gmx_clusterByFeatures-0.1.17-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 153f866a718c4eaaa35ba312f2e77d1efcd3db5170302f8d3d1168fd86a25b78
MD5 8e7de0a668899a4abeadfd16b9ac9f69
BLAKE2b-256 6d1b7d938f8b10e9d9b7b65e95336de5472fa6cf041c6e37d5e4bb4ff74d4186

See more details on using hashes here.

File details

Details for the file gmx_clusterByFeatures-0.1.17-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for gmx_clusterByFeatures-0.1.17-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 415b717edbab52f05e5b71af1baeac6fe640ffbdd7eb165c8de4ecde21198dbb
MD5 6db56fd0bfef93d38a75cac0aba1b54a
BLAKE2b-256 317244bf1fe15b7cc42fbbf0fb332273b08d74e9fac5d62aaf7134317d3f48e9

See more details on using hashes here.

File details

Details for the file gmx_clusterByFeatures-0.1.17-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for gmx_clusterByFeatures-0.1.17-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 512a7eca9b1c76982123fb059b98452bcc4fc3dcdb52ae125fd0430763c296f3
MD5 574f137390b54172453de5541d91da51
BLAKE2b-256 9232970f30969d36ebde5b53b04d27fd09a36c9f033acd71f6e14cfc27c4a99b

See more details on using hashes here.

File details

Details for the file gmx_clusterByFeatures-0.1.17-cp36-cp36m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for gmx_clusterByFeatures-0.1.17-cp36-cp36m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 dfc8dde34eac43b46b4db91db2b19dcd24febaea0914f86656159792c8c85187
MD5 6e4bbcf1c5562c53fb9e89087db58cda
BLAKE2b-256 bf26ba933763e4fae907889b3b44c59edcd7261f2dde6650d6f1b12734500c2d

See more details on using hashes here.

File details

Details for the file gmx_clusterByFeatures-0.1.17-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for gmx_clusterByFeatures-0.1.17-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b61cbb614a0f60d49834ca99ec6e7de99c818067b733c23541ca0134fef909a2
MD5 13ea48c1834f540cf24cd11264fab4c1
BLAKE2b-256 7b741339476c9908a5165975391ba964962e4b23d6dcf293e71b1ee39f2b7f5e

See more details on using hashes here.

File details

Details for the file gmx_clusterByFeatures-0.1.17-cp35-cp35m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for gmx_clusterByFeatures-0.1.17-cp35-cp35m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9caebed989d91c073cfd5001466e984930b6a8846bc077b345c30c8992722420
MD5 e3f7285d11d0ba43faee7e0b1a0d223f
BLAKE2b-256 f60ca6242fe429080a119d437ec96915fd078cacd23d0663702a71713a421683

See more details on using hashes here.

File details

Details for the file gmx_clusterByFeatures-0.1.17-cp35-cp35m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for gmx_clusterByFeatures-0.1.17-cp35-cp35m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 408effb3158ea7a0477c8bb0e53010180ddcc6e4690c199305d8232f5b9c465f
MD5 d56bb39f5633708492db8fb3520f9477
BLAKE2b-256 f9e42562f5760f5d43693e558d5c7fa9a3810c0357850710ea1e65ec317195c9

See more details on using hashes here.

File details

Details for the file gmx_clusterByFeatures-0.1.17-cp35-cp35m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for gmx_clusterByFeatures-0.1.17-cp35-cp35m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 ec41d9ca8e0b273c66620ef0f8b7f376e31f3392a0c55832d21a5e62c47fa925
MD5 85470ce83a0c69d0b893e5b11f1de0ca
BLAKE2b-256 e578f534d7b99779ad2393b5f85857842fa091bdd3853fd711770d071aa19725

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page