Skip to main content

A mini Deep Learning Library

Project description

gNet

GitHub release PyPI version shields.io PyPI license Docs

gNet is a mini Deep Learning(DL) library. It is written to understand how DL works. It is running on CPU. It is written on Python language and used :

* Numpy for linear algebra calculations
* Matplotlib for plottings
* Texttable for proper printing of model summary in cmd
* wget for download MNIST data
* idx2numpy for load MNIST data

some 3rd party libraries.

During devolopment, Tensorflow, Keras, Pytorch and some other libraries examined. Keras end-user approach is used. Therefore, if you are familiar with Keras, you can use gNet easily.

gNet has not a lot functions and methods for now, because subject is written when they needed to learn. Also, gNet is personal project. Thus, its development process depends on author learning process.

Installation

Installation can be done with pip or clone the git and use in local file of your workspace.

To install with pip.

pip install gNet

Example - MNIST

Sequential Model

from gNet import utils
from gNet import neuralnetwork as NN
from gNet import model
from gNet import layer
from gNet import optimizer
from gNet import loss_functions as LF

# download and load MNIST Dataset
mnist = utils.MNIST_Downloader()
x_train, y_train = mnist.load_train()
x_test, y_test = mnist.load_test()

# normalize
x_train, x_test = x_train / 255.0, x_test / 255.0

# make one-hot vector to label
num_classes = 10
y_train = utils.make_one_hot(y_train, num_classes)
y_test = utils.make_one_hot(y_test, num_classes)

# create model
model = model.Model()

# add layers 
model.add(layer.Flatten(input_shape=x_train[0].shape))
model.add(layer.Dense(128, 'relu'))
model.add(layer.Dense(10, 'softmax'))

# create NN structure
net = NN.NeuralNetwork(model)

# print model summary firstly
net.get_model_summary()

# setup structure
net.setup(loss_function='cce', optimizer='adam')

# train 
net.train(x_train, y_train, batch_size=32, epochs=10)

# evaluate
net.evaluate(x_test, y_test)

# get loss and accuracy plot
net.get_loss_plot(show=True)
net.get_accuracy_plot(show=True)

Result will be like :

Model created and initializing parameters..

+--------------------+--------------+-----------------+
|       Layer        | Output Shape | # of Parameters |
+====================+==============+=================+
| 0: flatten         | 784          | 0               |
+--------------------+--------------+-----------------+
| 1: Dense : relu    | 128          | 100480          |
+--------------------+--------------+-----------------+
| 2: Dense : softmax | 10           | 1290            |
+--------------------+--------------+-----------------+
| Total              |              | 101,770         |
+--------------------+--------------+-----------------+

Train starting..

Epoch : 1 / 10   100.00 %  Loss : 0.2640  Accuracy : 0.9241
Epoch : 2 / 10   100.00 %  Loss : 0.1164  Accuracy : 0.9657
Epoch : 3 / 10   100.00 %  Loss : 0.0802  Accuracy : 0.9761
Epoch : 4 / 10   100.00 %  Loss : 0.0598  Accuracy : 0.9816
Epoch : 5 / 10   100.00 %  Loss : 0.0469  Accuracy : 0.9856
Epoch : 6 / 10   100.00 %  Loss : 0.0373  Accuracy : 0.9884
Epoch : 7 / 10   100.00 %  Loss : 0.0301  Accuracy : 0.9908
Epoch : 8 / 10   100.00 %  Loss : 0.0234  Accuracy : 0.9931
Epoch : 9 / 10   100.00 %  Loss : 0.0213  Accuracy : 0.9933
Epoch : 10 / 10   100.00 %  Loss : 0.0164  Accuracy : 0.9949
Passed Training Time :  0:01:04.485637
Test Loss : 0.0969, Accuracy : 0.9747
Passed Evaluate Time :  0:00:00.140604

Functional Connection Layer Model

class MnistTrainer():
    def __init__(self) -> None:
        self.batchSize = 32
        self.epoch = 10
        self.createModel()
        self.loss = LF.CategoricalCrossEntropy()
        self.acc = self.loss.get_metric()
        self.layers = self.output.get_layers() # get all connectec layer from input layer.
        self._optimizer = optimizer.Adam()
        self.output.get_model_summary() # get model summary

    def createModel(self):
        self.flatten = layer.Flatten(input_shape=x_train[0].shape)
        self.flatten() # calculate layer properties as input layer.
        self.h1 = layer.Dense(128,'relu')
        self.h1(self.flatten) # connect the hidden layer to flatten layer as previous layer.
        self.output = layer.Dense(10, 'softmax')
        self.output(self.h1)

    # compute model layer by layer
    def compute(self, inputs, train=True):
        x = self.flatten.compute(inputs, train)
        x = self.h1.compute(x, train)
        return self.output.compute(x, train)

    def train(self):
        for e in range(self.epoch):
            self._ite = 0
            self.acc.reset()
            self._starts = np.arange(0, x_train.shape[0], self.batchSize)
            self._epoch_loss = 0
            for _start in self._starts:
                self._ite += 1
                _end = _start + self.batchSize
                _x_batch = T.make_tensor(x_train[_start:_end])
                _y_batch = T.make_tensor(y_train[_start:_end])

                self.output.zero_grad() # zeroing all layers' grad by calling `zero_grad`

                _pred = self.compute(_x_batch, True)
                _loss = self.loss.loss(_y_batch, _pred, self.output)
                _loss.backward()
                self._epoch_loss += np.mean(_loss.value)           
                self._accVal = self.acc.accuracy(_y_batch,_pred)    

                self._optimizer.step(self.layers)

                printing = 'Epoch : %d / %d ' % (e + 1, self.epoch)
                printing += ' Loss : %.4f ' % (np.round(self._epoch_loss / self._ite, 4))
                printing += ' Accuracy : %.4f ' % (np.round(self._accVal, 4))
                print(printing, end='\r')
            print("")

net = MnistTrainer()
net.train()

Result will be like :

Model created and initializing parameters..
+-----------------------------------+--------------+-----------------+
| Layer No (Previous Layer) | Layer | Output Shape | # of Parameters |
+===================================+==============+=================+
| 0: flatten                        | 784          | 0               |
+-----------------------------------+--------------+-----------------+
| 1(0) | Dense : relu               | 128          | 100480          |
+-----------------------------------+--------------+-----------------+
| 2(1) | Dense : softmax            | 10           | 1290            |
+-----------------------------------+--------------+-----------------+
| Total                             |              | 101,770         |
+-----------------------------------+--------------+-----------------+
Epoch : 1 / 10  Loss : 0.2720  Accuracy : 0.9221
Epoch : 2 / 10  Loss : 0.1200  Accuracy : 0.9649
Epoch : 3 / 10  Loss : 0.0806  Accuracy : 0.9762
Epoch : 4 / 10  Loss : 0.0588  Accuracy : 0.9829
Epoch : 5 / 10  Loss : 0.0442  Accuracy : 0.9875
Epoch : 6 / 10  Loss : 0.0330  Accuracy : 0.9912
Epoch : 7 / 10  Loss : 0.0249  Accuracy : 0.9937
Epoch : 8 / 10  Loss : 0.0197  Accuracy : 0.9950
Epoch : 9 / 10  Loss : 0.0172  Accuracy : 0.9951
Epoch : 10 / 10  Loss : 0.0144  Accuracy : 0.9959

Details

Details can be found in mini docs.

License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gNet-0.2.1.1.tar.gz (43.5 kB view hashes)

Uploaded Source

Built Distribution

gNet-0.2.1.1-py3-none-any.whl (49.1 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page