Graph Neural Network Tensorflow implementation
Project description
This repo contains a Tensorflow implementation of the Graph Neural Network model.
Website (including documentation): https://mtiezzi.github.io/gnn_site/
Authors: Matteo Tiezzi, Alberto Rossi
Install
Requirements
The GNN framework requires the packages tensorflow, numpy, scipy.
To install the requirements you can use the following command
pip install -U -r requirements.txt
Install the latest version of GNN:
pip install gnn
For additional details, please see Install.
Simple usage example
import gnn.GNN as GNN import gnn.gnn_utils import Net as n # Provide your own functions to generate input data inp, arcnode, nodegraph, labels = set_load() # Create the state transition function, output function, loss function and metrics net = n.Net(input_dim, state_dim, output_dim) # Create the graph neural network model g = GNN.GNN(net, input_dim, output_dim, state_dim) #Training for j in range(0, num_epoch): g.Train(inp, arcnode, labels, count, nodegraph) # Validate print(g.Validate(inp_val, arcnode_val, labels_val, count, nodegraph_val))
Citing
To cite the GNN implementation please use the following publication:
Rossi, A., Tiezzi, M., Dimitri, G.M., Bianchini, M., Maggini, M., & Scarselli, F. (2018). "Inductive–Transductive Learning with Graph Neural Networks", In Artificial Neural Networks in Pattern Recognition (pp.201-212). Berlin : Springer-Verlag.
Bibtex:
@inproceedings{rossi2018inductive, title={Inductive--Transductive Learning with Graph Neural Networks}, author={Rossi, Alberto and Tiezzi, Matteo and Dimitri, Giovanna Maria and Bianchini, Monica and Maggini, Marco and Scarselli, Franco}, booktitle={IAPR Workshop on Artificial Neural Networks in Pattern Recognition}, pages={201--212}, year={2018}, organization={Springer} }
To cite GNN please use the following publication:
F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, G. Monfardini, "The Graph Neural Network Model", IEEE Transactions on Neural Networks, vol. 20(1); p. 61-80, 2009.
Bibtex:
@article{Scarselli2009TheGN, title={The Graph Neural Network Model}, author={Franco Scarselli and Marco Gori and Ah Chung Tsoi and Markus Hagenbuchner and Gabriele Monfardini}, journal={IEEE Transactions on Neural Networks}, year={2009}, volume={20}, pages={61-80} }
License
Released under the 3-Clause BSD license (see LICENSE.txt):
Copyright (C) 2004-2019 Matteo Tiezzi Matteo Tiezzi <mtiezzi@diism.unisi.it> Alberto Rossi <alrossi@unifi.it>
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file gnn-1.1.9-py3-none-any.whl
.
File metadata
- Download URL: gnn-1.1.9-py3-none-any.whl
- Upload date:
- Size: 11.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 77deba87847f49f4a76670e284279f716215ecc3c91716496f54a559e6360687 |
|
MD5 | 1f3fca3a3ac4e80f257bd9cb22486928 |
|
BLAKE2b-256 | 004df2ddea8ce94efad2b766aae9be49bc424fa36fa4e426473dd5e9dc00a15a |