Skip to main content

Graph Neural Network Tensorflow implementation

Project description

Graph Neural Network Model

This repo contains a Tensorflow implementation of the Graph Neural Network model.

Install

The GNN framework requires the packages *tensorflow, numpy, scipy

To install the requirements you can use the following command:

pip install -U -r requirements.txt

Install the latest version of GNN:

$ pip install gnn

For additional details, please see INSTALL.rst.

Simple usage example

    import GNN
    import Net as n
    
    # Provide your own functions to generate input data
    inp, arcnode, nodegraph, labels = set_load()

    # Create the state transition function, output function, loss function and  metrics 
    net = n.Net(input_dim, state_dim, output_dim)

    # Create the graph neural network model
    g = GNN.GNN(net, input_dim, output_dim, state_dim)
    
    #Training
            
    for j in range(0, num_epoch):
        g.Train(inp, arcnode, labels, count, nodegraph)
        
        # Validate            
        print(g.Validate(inp_val, arcnode_val, labels_val, count, nodegraph_val))

License

Released under the 3-Clause BSD license (see LICENSE)

Copyright (C) 2004-2019 Matteo Tiezzi Matteo Tiezzi mtiezzi@diism.unisi.it Alberto Rossi alrossi@unifi.it

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gnn-1.0.5.tar.gz (7.0 kB view details)

Uploaded Source

File details

Details for the file gnn-1.0.5.tar.gz.

File metadata

  • Download URL: gnn-1.0.5.tar.gz
  • Upload date:
  • Size: 7.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.5.2

File hashes

Hashes for gnn-1.0.5.tar.gz
Algorithm Hash digest
SHA256 43e6b1c655beecfb918913b9882976886bafd5b33875fe5780bde2f074558fe6
MD5 9aa397d2f4cf03219c90653e75d87465
BLAKE2b-256 ea86e35948aa86ba68e345b05e9da9f5b8f4de7d033f2e5ffcb2af9fa156601f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page