Graph Neural Network Tensorflow implementation
Project description
This repo contains a Tensorflow implementation of the Graph Neural Network model.
Website (including documentation): https://sailab.diism.unisi.it/gnn/index.html
Install
Requirements
The GNN framework requires the packages tensorflow, numpy, scipy.
To install the requirements you can use the following command
pip install -U -r requirements.txt
Install the latest version of GNN:
pip install gnn
For additional details, please see Install.
Simple usage example
import gnn.GNN as GNN import gnn.gnn_utils import Net as n # Provide your own functions to generate input data inp, arcnode, nodegraph, labels = set_load() # Create the state transition function, output function, loss function and metrics net = n.Net(input_dim, state_dim, output_dim) # Create the graph neural network model g = GNN.GNN(net, input_dim, output_dim, state_dim) #Training for j in range(0, num_epoch): g.Train(inp, arcnode, labels, count, nodegraph) # Validate print(g.Validate(inp_val, arcnode_val, labels_val, count, nodegraph_val))
License
Released under the 3-Clause BSD license (see LICENSE.txt):
Copyright (C) 2004-2019 Matteo Tiezzi Matteo Tiezzi <mtiezzi@diism.unisi.it> Alberto Rossi <alrossi@unifi.it>
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
gnn-1.1.5.tar.gz
(9.0 kB
view details)
File details
Details for the file gnn-1.1.5.tar.gz
.
File metadata
- Download URL: gnn-1.1.5.tar.gz
- Upload date:
- Size: 9.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: Python-urllib/3.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 316e7683956db4fc461c773583a06476630e575f206b3dcdbb8db4edae3f0fce |
|
MD5 | 4e464f8f5425e6d256dc77afd91642a4 |
|
BLAKE2b-256 | 887d8a3f5e2c84c8c67fff0b546d4fa56d5fba1b68c617eb83379e74643f096a |