Skip to main content

GO enrichment with python -- pandas meets networkx

Project description

goenrich

Convenient GO enrichments from python. For use in python projects.

  1. Builds the GO-ontology graph

  2. Propagates GO-annotations up the graph

  3. Performs enrichment test for all categories

  4. Performs multiple testing correction

  5. Allows for export to pandas for processing and graphviz for visualization

Supported ids: Uniport ACC, Entrez GeneID

Installation

Install package from pypi and download ontology
and needed annotations.
pip install goenrich
mkdir db
# Ontology
wget http://purl.obolibrary.org/obo/go/go-basic.obo -O db/go-basic.obo
# UniprotACC
wget http://geneontology.org/gene-associations/gene_association.goa_ref_human.gz -O db/gene_association.goa_ref_human.gz
# Entrez GeneID
wget ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2go.gz -O db/gene2go.gz

Run GO enrichment

import goenrich

# build the ontology
G = goenrich.obo.graph('db/go-basic.obo')

# use all entrez geneid associations form gene2go as background
# use goenrich.read.goa('db/gene_association.goa_ref_human.gz') for uniprot
background = goenrich.read.gene2go('db/gene2go.gz')
goenrich.enrich.set_background(G, background, 'GeneID', 'GO_ID')

# extract some list of entries as example query
query = set(background['GeneID'].unique()[:20])

# run analysis and obtain results
result = goenrich.enrich.analyze(G, query)

# for additional export to graphviz just specify the gvfile argument
# the show argument keeps the graph reasonably small
result = goenrich.enrich.analyze(G, query, gvfile='example.dot', show='top20')

Generate png image using graphviz

dot -Tpng example.dot > example.png

example

Parameters

Parameters can all be passed to enrich.analyze as shown below

go_options = {
        'multiple-testing-correction' : 'bonferroni',
        'alpha' : 0.05,
        'node_filter' : lambda x : x.get('significant', False)
}
goenrich.enrich.analyze(G, query, **go_options)

# export results to graphviz
goenrich.enrich.analyze(G, query, gvfile='example.dot', **go_options)

Here is an overview over the available parmeters

enrich.analyze:
  node_filter = lambda node : 'p' in node
  show = 'top20' # works for any 'topNUM'

enrich.calculate_pvalues:
  min_category_size = 3
  max_category_size = 500
  min_hit_size = 2

enrich.multiple_testing_correction:
  alpha = 0.05
  method = ['benjamin-hochberg', 'bonferroni']

export.to_frame:
  node_filter = lambda node: True

export.to_graphviz:
  graph_label = None # if None it is replaced by multiple testing info

Licence

This work is licenced under the MIT licence

Contributions are welcome!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

goenrich-1.0.1.tar.gz (7.1 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page