Skip to main content

Retrieve GOES-16/17 data from AWS. Also proves some RGB recipes.

Project description

Download and display GOES-East and GOES-West data

Conda Version DOI

Code style: black Tests (Python) Documentation Status Python Conda Recipe Conda Downloads Conda Platforms

GOES-East and GOES-West satellite data are made available on Amazon Web Services through NOAA's Open Data Dissemination Program. GOES-2-go is a python package that makes it easy to find and download the files you want from AWS to your local computer with some additional helpers to visualize and understand the data.



📔 GOES-2-go Documentation



Installation

The easiest way to install goes2go and its dependencies is with Conda from conda-forge.

conda install -c conda-forge goes2go

You may also create the provided Conda environment, environment.yml.

# Download environment file
wget https://github.com/blaylockbk/goes2go/raw/main/environment.yml

# Modify that file if you wish.

# Create the environment
conda env create -f environment.yml

# Activate the environment
conda activate goes2go

Alternatively, goes2go is published on PyPI and you can install it with pip, but it requires some additional dependencies that you will have to install yourself:

When those are installed within your environment, then you can install GOES-2-go with pip.

# Latest published version
pip install goes2go

# ~~ or ~~

# Most recent changes
pip install git+https://github.com/blaylockbk/goes2go.git

Capabilities

  graph TD;
      aws16[(AWS\nnoaa-goes16)] -.-> G
      aws17[(AWS\nnoaa-goes17)] -.-> G
      aws18[(AWS\nnoaa-goes18)] -.-> G
      G((. GOES 2-go .))
      G --- .latest
      G --- .nearesttime
      G --- .timerange
      .latest --> ds[(xarray.DataSet)]
      .nearesttime --> ds[(xarray.DataSet)]
      .timerange --> ds[(xarray.DataSet)]
      ds --- rgb[ds.rgb\naccessor to make RGB composites]
      ds --- fov[ds.FOV\naccessor to get field-of-view polygons]

      style G fill:#F8AF22,stroke:#259DD7,stroke-width:4px,color:#000000

Download Data

Download GOES ABI or GLM NetCDF files to your local computer. Files can also be read with xarray.

First, create a GOES object to specify the satellite, data product, and domain you are interested in. The example below downloads the Multi-Channel Cloud Moisture Imagery for CONUS.

from goes2go import GOES

# ABI Multi-Channel Cloud Moisture Imagry Product
G = GOES(satellite=16, product="ABI-L2-MCMIP", domain='C')

# Geostationary Lightning Mapper
G = GOES(satellite=17, product="GLM-L2-LCFA", domain='C')

# ABI Level 1b Data
G = GOES(satellite=17, product="ABI-L1b-Rad", domain='F')

A complete listing of the products available are available here.

There are methods to do the following:

  • List the available files for a time range
  • Download data to your local drive for a specified time range
  • Read the data into an xarray Dataset for a specific time
   # Produce a pandas DataFrame of the available files in a time range
   df = G.df(start='2022-07-04 01:00', end='2022-07-04 01:30')
   # Download and read the data as an xarray Dataset nearest a specific time
   ds = G.nearesttime('2022-01-01')
   # Download and read the latest data as an xarray Dataset
   ds = G.latest()
   # Download data for a specified time range
   G.timerange(start='2022-06-01 00:00', end='2022-06-01 01:00')

   # Download recent data for a specific interval
   G.timerange(recent='30min')

RGB Recipes

The rgb xarray accessor computes various RGB products from a GOES ABI ABI-L2-MCMIP (multi-channel cloud and moisture imagry products) xarray.Dataset. See the demo for more examples of RGB products.

import matplotlib.pyplot as plt
ds = GOES().latest()
ax = plt.subplot(projection=ds.rgb.crs)
ax.imshow(ds.rgb.TrueColor(), **ds.rgb.imshow_kwargs)
ax.coastlines()

Field of View

The FOV xarray accessor creates shapely.Polygon objects for the ABI and GLM field of view. See notebooks for GLM and ABI field of view.

from goes2go.data import goes_latest
G = goes_latest()
# Get polygons of the full disk or ABI domain field of view.
G.FOV.full_disk
G.FOV.domain
# Get Cartopy coordinate reference system
G.FOV.crs

GOES-West is centered over -137 W and GOES-East is centered over -75 W. When GOES was being tested, it was in a "central" position, outlined in the dashed black line. Below is the ABI field of view for the full disk: field of view image

The GLM field of view is slightly smaller and limited by a bounding box. Below is the approximated GLM field of view: field of view image

How to Cite and Acknowledge

If GOES-2-go played an important role in your work, please tell me about it! Also, consider including a citation or acknowledgement in your article or product.

Suggested Citation

Blaylock, B. K. (2023). GOES-2-go: Download and display GOES-East and GOES-West data (Version 2022.07.15) [Computer software]. https://github.com/blaylockbk/goes2go

Suggested Acknowledgment

A portion of this work used code generously provided by Brian Blaylock's GOES-2-go python package (https://github.com/blaylockbk/goes2go)

What if I don't like the GOES-2-go or Python?

As an alternative you can use rclone to download GOES files from AWS. I quite like rclone. Here is a short rclone tutorial.


I hope you find this makes GOES data easier to retrieve and display. Enjoy!

- Brian Blaylock

👨🏻‍💻 Contributing Guidelines
💬 GitHub Discussions
🚑 GitHub Issues
🌐 Personal Webpage

P.S. If you like GOES-2-go, check out my other python packages

Related Content

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

goes2go-2023.8.0.tar.gz (44.1 kB view details)

Uploaded Source

Built Distribution

goes2go-2023.8.0-py3-none-any.whl (36.3 kB view details)

Uploaded Python 3

File details

Details for the file goes2go-2023.8.0.tar.gz.

File metadata

  • Download URL: goes2go-2023.8.0.tar.gz
  • Upload date:
  • Size: 44.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for goes2go-2023.8.0.tar.gz
Algorithm Hash digest
SHA256 2dd40a883d72b0379513359a10bdf5007a1d44fe18661b3aa728acbb64647e17
MD5 17793fb80b450c958805c436dfbc0728
BLAKE2b-256 821c564fc8f8e9e39554175793750efb306c9909b7053366b1d217c3baa3c389

See more details on using hashes here.

File details

Details for the file goes2go-2023.8.0-py3-none-any.whl.

File metadata

  • Download URL: goes2go-2023.8.0-py3-none-any.whl
  • Upload date:
  • Size: 36.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for goes2go-2023.8.0-py3-none-any.whl
Algorithm Hash digest
SHA256 a907240d5e8990117610392578d59d9a4a4d81940795ddbbc6c3440c586f3d78
MD5 1180e9d24ee7e8942ab52b11286bd1c5
BLAKE2b-256 f985d2d91b61b35e00b83c20333da8de212412aadd6510752f214d1a2913465b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page