Skip to main content

A wrapper of luigi. This make it easy to define tasks.

Project description

gokart

Build Status

A wrapper of the data pipeline library "luigi".

Getting Started

Run pip install gokart to install the latest version from PyPI. Documentation for the latest release is hosted on readthedocs.

How to Use

Please use gokart.TaskOnKart instead of luigi.Task to define your tasks.

Basic Task with gokart.TaskOnKart

import gokart

class BasicTask(gokart.TaskOnKart):
    def requires(self):
        return TaskA()

    def output(self):
        # please use TaskOnKart.make_target to make Target.
        return self.make_target('basic_task.csv')

    def run(self):
        # load data which TaskA output
        texts = self.load()
        
        # do something with texts, and make results.
        
        # save results with the file path {self.workspace_directory}/basic_task_{unique_id}.csv
        self.dump(results)

Details of base functions

Make Target with TaskOnKart

TaskOnKart.make_target judge Target type by the passed path extension. The following extensions are supported.

  • pkl
  • txt
  • csv
  • tsv
  • gz
  • json
  • xml

Make Target for models which generate multiple files in saving.

TaskOnKart.make_model_target and TaskOnKart.dump are designed to save and load models like gensim.model.Word2vec.

class TrainWord2Vec(TaskOnKart):
    def output(self):
        # please use 'zip'.
        return self.make_model_target(
            'model.zip', 
            save_function=gensim.model.Word2Vec.save,
            load_function=gensim.model.Word2Vec.load)

    def run(self):
        # make word2vec
        self.dump(word2vec)

Load input data

Pattern 1: Load input data individually.
def requires(self):
    return dict(data=LoadItemData(), model=LoadModel())

def run(self):
    # pass a key in the dictionary `self.requires()`
    data = self.load('data')  
    model = self.load('model')
Pattern 2: Load input data at once
def run(self):
    input_data = self.load()
    """
    The above line is equivalent to the following:
    input_data = dict(data=self.load('data'), model=self.load('model'))
    """

Load input data as pd.DataFrame

def requires(self):
    return LoadDataFrame()

def run(self):
    data = self.load_data_frame(required_columns={'id', 'name'})  

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gokart-0.3.12.tar.gz (33.5 kB view details)

Uploaded Source

File details

Details for the file gokart-0.3.12.tar.gz.

File metadata

  • Download URL: gokart-0.3.12.tar.gz
  • Upload date:
  • Size: 33.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.6.7

File hashes

Hashes for gokart-0.3.12.tar.gz
Algorithm Hash digest
SHA256 cc7063ecf3ad8df88f360b3440f33b84fffab1943f959a4e6ea5400260863dcb
MD5 d7c66049be9ba48f641e7353d4ee11a5
BLAKE2b-256 84478a24586c045a4823b6d73c1a04720e52befe6f3bca0bd6d55a0eb31a8c11

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page