Skip to main content

A wrapper of luigi. This make it easy to define tasks.

Project description

gokart

Build Status

A wrapper of the data pipeline library "luigi".

Getting Started

Run pip install gokart to install the latest version from PyPI. Documentation for the latest release is hosted on readthedocs.

How to Use

Please use gokart.TaskOnKart instead of luigi.Task to define your tasks.

Basic Task with gokart.TaskOnKart

import gokart

class BasicTask(gokart.TaskOnKart):
    def requires(self):
        return TaskA()

    def output(self):
        # please use TaskOnKart.make_target to make Target.
        return self.make_target('basic_task.csv')

    def run(self):
        # load data which TaskA output
        texts = self.load()
        
        # do something with texts, and make results.
        
        # save results with the file path {self.workspace_directory}/basic_task_{unique_id}.csv
        self.dump(results)

Details of base functions

Make Target with TaskOnKart

TaskOnKart.make_target judge Target type by the passed path extension. The following extensions are supported.

  • pkl
  • txt
  • csv
  • tsv
  • gz
  • json
  • xml

Make Target for models which generate multiple files in saving.

TaskOnKart.make_model_target and TaskOnKart.dump are designed to save and load models like gensim.model.Word2vec.

class TrainWord2Vec(TaskOnKart):
    def output(self):
        # please use 'zip'.
        return self.make_model_target(
            'model.zip', 
            save_function=gensim.model.Word2Vec.save,
            load_function=gensim.model.Word2Vec.load)

    def run(self):
        # make word2vec
        self.dump(word2vec)

Load input data

Pattern 1: Load input data individually.
def requires(self):
    return dict(data=LoadItemData(), model=LoadModel())

def run(self):
    # pass a key in the dictionary `self.requires()`
    data = self.load('data')  
    model = self.load('model')
Pattern 2: Load input data at once
def run(self):
    input_data = self.load()
    """
    The above line is equivalent to the following:
    input_data = dict(data=self.load('data'), model=self.load('model'))
    """

Load input data as pd.DataFrame

def requires(self):
    return LoadDataFrame()

def run(self):
    data = self.load_data_frame(required_columns={'id', 'name'})  

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gokart-0.3.15.tar.gz (34.9 kB view details)

Uploaded Source

File details

Details for the file gokart-0.3.15.tar.gz.

File metadata

  • Download URL: gokart-0.3.15.tar.gz
  • Upload date:
  • Size: 34.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.6.7

File hashes

Hashes for gokart-0.3.15.tar.gz
Algorithm Hash digest
SHA256 7824f441aada5703e27922a3204e5b06dc45a09b9582ea392e0d66b3ab2323fc
MD5 c8bb51d29f7772731fc99652536473f0
BLAKE2b-256 e0d21fe1807ad4bddfa9b23256113bed49fb660b0a0b88bbd3e782cf7dfa111b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page